One of the potent personalization technologies powering the adaptive web is collaborative filtering. Collaborative filtering (CF) is the process of filtering or evaluating items through the opinions of other people. CF technology brings together the opinions of large interconnected communities on the web, supporting filtering of substantial quantities of data. In this chapter we introduce the core concepts of collaborative filtering, its primary uses for users of the adaptive web, the theory and practice of CF algorithms, and design decisions regarding rating systems and acquisition of ratings. We also discuss how to evaluate CF systems, and the evolution of rich interaction interfaces. We close the chapter with discussions of the challenges of privacy particular to a CF recommendation service and important open research questions in the field.
A tagging community's vocabulary of tags forms the basis for social navigation and shared expression. We present a user-centric model of vocabulary evolution in tagging communities based on community influence and personal tendency. We evaluate our model in an emergent tagging system by introducing tagging features into the MovieLens recommender system. We explore four tag selection algorithms for displaying tags applied by other community members. We analyze the algorithms' effect on vocabulary evolution, tag utility, tag adoption, and user satisfaction.
We study gender representation on the editorial boards of 435 journals in the mathematical sciences. Women are known to comprise approximately 15% of tenure-stream faculty positions in doctoral-granting mathematical sciences departments in the United States. Compared to this group, we find that 8.9% of the 13067 editorships in our study are held by women. We describe group variations within the editorships by identifying specific journals, subfields, publishers, and countries that significantly exceed or fall short of this average. To enable our study, we develop a semi-automated method for inferring gender that has an estimated accuracy of 97.5%. Our findings provide the first measure of gender distribution on editorial boards in the mathematical sciences, offer insights that suggest future studies in the mathematical sciences, and introduce new methods that enable large-scale studies of gender distribution in other fields.
No abstract
Recommender systems try to address the "new user problem" by quickly and painlessly learning user preferences so that users can begin receiving recommendations as soon as possible. We take an expanded perspective on the new user experience, seeing it as an opportunity to elicit valuable contributions to the community and shape subsequent user behavior. We conducted a field experiment in MovieLens where we imposed additional work on new users: not only did they have to rate movies, they also had to enter varying numbers of tags. While requiring more work led to fewer users completing the entry process, the benefits were significant: the remaining users produced a large volume of tags initially, and continued to enter tags at a much higher rate than a control group. Further, their rating behavior was not depressed. Our results suggest that careful design of the initial user experience can lead to significant benefits for an online community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.