In this paper, we strive to answer two questions: What is the current state of 3D hand pose estimation from depth images? And, what are the next challenges that need to be tackled? Following the successful Hands In the Million Challenge (HIM2017), we investigate the top 10 state-ofthe-art methods on three tasks: single frame 3D pose estimation, 3D hand tracking, and hand pose estimation during object interaction. We analyze the performance of different CNN structures with regard to hand shape, joint visibility, view point and articulation distributions. Our findings include: (1) isolated 3D hand pose estimation achieves low mean errors (10 mm) in the view point range of [70, 120] degrees, but it is far from being solved for extreme view points; (2) 3D volumetric representations outperform 2D CNNs, better capturing the spatial structure of the depth data; (3) Discriminative methods still generalize poorly to unseen hand shapes; (4) While joint occlusions pose a challenge for most methods, explicit modeling of structure constraints can significantly narrow the gap between errors on visible and occluded joints.
Recently, 3D input data based hand pose estimation methods have shown state-of-the-art performance, because 3D data capture more spatial information than the depth image. Whereas 3D voxel-based methods need a large amount of memory, PointNet based methods need tedious preprocessing steps such as K-nearest neighbour search for each point. In this paper, we present a novel deep learning hand pose estimation method for an unordered point cloud. Our method takes 1024 3D points as input and does not require additional information. We use Permutation Equivariant Layer (PEL) as the basic element, where a residual network version of PEL is proposed for the hand pose estimation task. Furthermore, we propose a votingbased scheme to merge information from individual points to the final pose output. In addition to the pose estimation task, the voting-based scheme can also provide point cloud segmentation result without ground-truth for segmentation. We evaluate our method on both NYU dataset and the Hands2017Challenge dataset. Our method outperforms recent state-of-the-art methods, where our pose accuracy is currently the best for the Hands2017Challenge dataset.
Hand pose estimation from monocular RGB inputs is a highly challenging task. Many previous works for monocular settings only used RGB information for training despite the availability of corresponding data in other modalities such as depth maps. In this work, we propose to learn a joint latent representation that leverages other modalities as weak labels to improve RGB-based hand pose estimation. By design, our architecture is highly flexible in embedding various diverse modalities such as heat maps, depth maps and point clouds. In particular, we find that encoding and decoding the point cloud of the hand surface can improve the quality of the joint latent representations. Experiments show that with the aid of other modalities during training, our proposed method boosts the accuracy of RGB-based hand pose estimation systems and significantly outperforms state-of-the-art on two public benchmarks.
We study how well different types of approaches generalise in the task of 3D hand pose estimation under single hand scenarios and handobject interaction. We show that the accuracy of state-of-the-art methods can drop, and that they fail mostly on poses absent from the training set. Unfortunately, since the space of hand poses is highly dimensional, it is inherently not feasible to cover the whole space densely, despite recent efforts in collecting large-scale training datasets. This sampling problem is even more severe when hands are interacting with objects and/or inputs are RGB rather than depth images, as RGB images also vary with lighting conditions and colors. To address these issues, we designed a public challenge (HANDS'19) to evaluate the abilities of current 3D hand pose estimators (HPEs) to interpolate and extrapolate the poses of a training set. More exactly, HANDS'19 is designed (a) to evaluate the influence of both depth and color modalities on 3D hand pose estimation, under the presence or absence of objects; (b) to assess the generalisation abilities w.r.t. four main axes: shapes, articulations, viewpoints, and objects; (c) to explore the use of a synthetic hand models to fill the gaps of current datasets. Through the challenge, the overall accuracy has dramatically improved over the baseline, especially on extrapolation tasks, from 27mm to 13mm mean joint error. Our analyses highlight the impacts of: Data pre-processing, ensemble approaches, the use of a parametric 3D hand model (MANO), and different HPE methods/backbones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.