Land cover classification with SAR images mainly focuses on the utilization of fully polarimetric SAR (PolSAR) images. The conventional task of PolSAR classification is single-pixel-based region-level classification using polarimetric target decomposition. In recent years, a large number of high-resolution SAR images have become available, most of which are single-polarization. This article explores the potential of object-level semantic segmentation of high-resolution single-pol SAR images, in particular tailored for the Gaofen-3 (GF-3) sensor. First, a well-annotated GF-3 segmentation dataset "FUSAR-Map" is presented for SAR semantic segmentation. It is based on four data sources: GF-3 single-pol SAR images, Google Earth optical remote sensing images, Google Earth digital maps, and building footprint vector data. It consists of 610 high-resolution GF-3 single-pol SAR images with the size of 1024 × 1024. Second, an encoder-decoder network based on transfer learning is employed to implement semantic segmentation of GF-3 SAR images. For the FUSAR-Map dataset, an optical image pretrained deep convolution neural network (DCNN) is fine-tuned with the SAR training dataset. Experiments on the FUSAR-Map dataset demonstrate the feasibility of object-level semantic segmentation with high-resolution GF-3 single-pol SAR images. Also, our algorithm obtains fourth place about the PolSAR image semantic segmentation on the "2020 Gaofen Challenge on Automated High-Resolution Earth Observation Image Interpretation." The new dataset and the encoder-decoder network are intended as the benchmark data and baseline algorithm for further development of semantic segmentation with high-resolution SAR images. The FUSAR-Map and our algorithm are available at github.com/fudanxu/FUSAR-Map/.
Despite the advantages of all-weather and all-day high-resolution imaging, synthetic aperture radar (SAR) images are much less viewed and used by general people because human vision is not adapted to microwave scattering phenomenon. However, expert interpreters can be trained by comparing side-by-side SAR and optical images to learn the mapping rules from SAR to optical. This paper attempts to develop machine intelligence that are trainable with large-volume co-registered SAR and optical images to translate SAR image to optical version for assisted SAR image interpretation. Reciprocal SAR-Optical image translation is a challenging task because its raw data translation between two physically very different sensing modalities. Inspired by recent progresses in image translation studies in computer vision, this paper tackles the problem of SAR-optical reciprocal translation with an adversarial network scheme where cascaded residual connections and hybrid L1-GAN loss are employed. It is trained and tested on both spaceborne GF3 and airborne UAVSAR images. Results are presented for datasets of different resolutions and polarizations and compared with other state-of-the-art methods. The Frchet inception distance is used to quantitatively evaluate the translation performance. The possibility of unsupervised learning with unpaired SAR and optical images is also explored. Results show that the proposed translation network works well under many scenarios and it could potentially be used for assisted SAR interpretation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.