SummaryAge-associated immune dysfunction, characterized by increased systemic levels of cytokines, manifests as an increased susceptibility to infections. Thus, understanding these negative regulators of the immune response has paved the way to delineating signaling pathways that impact immune senescence. In the present study, we found that miR-146a, which negatively regulated the expression of IL-1b and IL-6, was highly expressed in aged mice. However, there was a lack of response to the stimulation of lipopolysaccharide (LPS) and proinflammatory cytokines in macrophages of aged mice. As a result, the negative feedback regulation loop with miR-146a involving down-regulation of inflammation factors was interrupted in aged mice. Aberrant NF-jB binding to the miR-146a promoter was demonstrated to be associated with the abnormal expression of miR-146a in aged mice. The DNA methyltransferase inhibitor (5-aza-2-deoxycytidine) and the histone deacetylase inhibitor [trichostatin A (TSA)] both significantly up-regulated miR-146a transcriptional activation by altering the DNA-binding activity of NF-jB in macrophages isolated from aged mice, which suggests that DNA methylation and histone acetylation are involved in the suppression of age-dependent miR-146a expression. Additionally, high levels of histone deacetylase (HDACs) expressions contributed to the inhibition of miR-146a expression in LPS-stimulated macrophages from aged mice in vitro. While the suppression of HDACs activities by TSA could improve LPS-induced inflammatory responses owing to up-regulation of miR-146a expression in macrophages from aged mice. These data indicate that the dysregulated expression of miR-146a results in the age-associated dysfunction of macrophages, and miR-146a may be a good target for the treatment of age-related inflammatory diseases.
Tumour necrosis factor‐related apoptosis‐inducing ligand (TRAIL) induces apoptosis in a variety of tumour cells, but not in most normal cells, and has attracted considerable attention for its potential use in cancer therapy. Recently, increasing evidence has shown that TRAIL is involved in inflammation, although much of this evidence is controversial. In this article, it is shown that TRAIL induces CXCL2, CCL4 and CCL20 secretion in a nuclear factor kappa B‐dependent manner. The dominant negative constructs of tumour necrosis factor receptor‐associated death domain protein (TRADD) and tumour necrosis factor receptor‐associated factor 2 are unable to block TRAIL‐induced chemokine up‐regulation, and the dominant negative construct of TRADD may even enhance TRAIL‐triggered signals. Using small interfering RNA, receptor interacting protein has been demonstrated to be essential for TRAIL‐induced chemokine release. Furthermore, it has been demonstrated that p38 mitogen‐activated protein kinase is involved in TRAIL‐induced chemokine release without any effects on nuclear factor kappa B activation, suggesting that some unknown transcription factors may be activated by TRAIL. Using a xenograft tumour model, it has been illustrated that TRAIL can also induce chemokine release in vivo. Although these chemokines induced by TRAIL are inflammatory chemokines, their functions are not restricted to inflammation and require further examination. Our results indicate that attention should be paid to the side‐effects of TRAIL treatment, not only in TRAIL‐resistant but also in TRAIL‐sensitive tumour cells.
BackgroundTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) could induce apoptosis of HIV-1-infected monocyte-derived macrophage (MDM), but the molecular mechanisms are not well understood.Methodology/Principal FindingsBy using an HIV-1 Env-pseudotyped virus (HIV-1 PV)-infected MDM cell model we demonstrate that HIV-1 PV infection down-regulates the expression of TRAIL decoy receptor 1 (DcR1) and 2 (DcR2), and cellular FLICE-inhibitory protein (c-FLIP), but dose not affect the expression of death receptor 4 and 5 (DR4, DR5), and Bcl-2 family members in MDM cells. Furthermore, recombinant soluble TRAIL and an agonistic anti-DR5 antibody, AD5-10, treatment stimulates reactive oxygen species (ROS) generation and JNK phosphorylation.Conclusions/SignificanceHIV infection facilitates TRIAL-induced cell death in MDM by down-regulating the expression of TRAIL decoy receptors and intracellular c-FLIP. Meanwhile, the agonistic anti-DR5 antibody, AD5-10, induces apoptosis synergistically with TRAIL in HIV-1-infected cells. ROS generation and JNK phosphorylation are involved in this process. These findings potentiate clinical usage of the combination of TRAIL and AD5-10 in eradication of HIV-infected macrophage and AIDS.
To evaluate the tumoricidal activity of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on disseminated liver metastatic tumors, we constructed a recombinant adenoassociated virus (rAAV) expressing the extracellular domain (95-281aa) of human TRAIL (TRAIL , and the recombinant virus was designated as rAAV-TRAIL) using the 3-plasmid, helper-virus-free, packaging system. Transduction of mouse lymphoma EL-4 cells and Jurkat T cells lead to the expression of TRAIL 95-281 protein in both virus-transduced cells and the culture media, along with apoptosis of these cells in vitro. The therapeutic potential of rAAV-TRAIL was then evaluated in an orthotopic transplanted mouse model mimicking liver cancer metastasis, which was established by injection of EL-4 cells into the liver of C57BL/6 mice via the hepatic portal veins. Subsequent intraportal vein injection of rAAV-TRAIL, not the control virus, into the liver of these mice resulted in significant suppression of tumor growth and prolonged survival, while normal hepatocyte toxicity is undetectable. Histological and biochemical analysis in tumor tissue and serum confirmed that TRAIL 95-281 was stably expressed in relatively high level in hepatocytes and was secreted into the serum in active trimeric form. Futhermore, the mechanism for rAAV-TRAIL to inhibit tumor growth was by inducing apoptosis of the tumor cells metastasizing to the livers. These results strongly suggest that the rAAV-TRAIL-mediated gene delivery could be a promising approach for the treatment of liver metastasis cancer. ' 2005 Wiley-Liss, Inc.Key words: adeno-associated virus vector; tumor necrosis factorrelated apoptosis inducing ligand; EL-4 cells; liver metastasis; gene therapy Metastasis is the major cause of cancer therapeutic failure and patient mortality. The most frequent site of blood-borne metastases is the liver, which is also involved in about one third of all cancers.1 The liver metastasis of lymphoma universally occurs in the clinical settings, resulting in poor prognosis in patients. Resection of liver metastasis constitutes the only curative treatment but is only feasible for about 10% of all patients with high recurrence rate. Chemotherapy and embolization are at best palliative but have no impact on survival or life-span. Therefore, a substitutional therapeutic strategy for the treatment of metastatic liver cancers is exigently sought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.