Summer monsoon rainfall contributes more than 75% of the annual rainfall in India. For the state of Maharashtra, India, this is more than 80% for almost all regions of the state. The high variability of rainfall during this period necessitates the classification of rainy and non-rainy days. While there are various approaches to rainfall classification, this paper proposes rainfall classification based on weather variables. This paper explores the use of support vector machine (SVM) and artificial neural network (ANN) algorithms for the binary classification of summer monsoon rainfall using common weather variables such as relative humidity, temperature, pressure. The daily data, for the summer monsoon months, for nineteen years, was collected for the Shivajinagar station of Pune in the state of Maharashtra, India. Classification accuracy of 82.1 and 82.8%, respectively, was achieved with SVM and ANN algorithms, for an imbalanced dataset. While performance parameters such as misclassification rate, F1 score indicate that better results were achieved with ANN, model parameter selection for SVM was less involved than ANN. Domain adaptation technique was used for rainfall classification at the other two stations of Maharashtra with the network trained for the Shivajinagar station. Satisfactory results for these two stations were obtained only after changing the training method for SVM and ANN.
Predicting rainfall is essential for assessing the impact of climatic and hydrological changes over a specific region, predicting natural disasters or day-to-day life. It is one of the most prominent, complex, and essential weather forecasting and meteorology tasks. In this chapter, long short-term memory network (LSTM), artificial neural network (ANN), and 1-dimensional convolutional neural network LSTM (1D CNN-LSTM) models are explored for predicting rainfall at multiple lead times. The daily weather parameter data of over 15 years is collected for a station in Maharashtra. Rainfall data is classified into three classes: no-rain, light rain, and moderate-to-heavy rain. The principal component analysis (PCA) helped to reduce the input feature dimension. The performance of all the networks are compared in terms of accuracy and F1 score. It is observed that LSTM predicts rainfall with consistent accuracy of 82% for 1 to 6 days lead time while the performance of 1D CNN-LSTM and ANN are comparable to LSTM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.