Predicting rainfall is essential for assessing the impact of climatic and hydrological changes over a specific region, predicting natural disasters or day-to-day life. It is one of the most prominent, complex, and essential weather forecasting and meteorology tasks. In this chapter, long short-term memory network (LSTM), artificial neural network (ANN), and 1-dimensional convolutional neural network LSTM (1D CNN-LSTM) models are explored for predicting rainfall at multiple lead times. The daily weather parameter data of over 15 years is collected for a station in Maharashtra. Rainfall data is classified into three classes: no-rain, light rain, and moderate-to-heavy rain. The principal component analysis (PCA) helped to reduce the input feature dimension. The performance of all the networks are compared in terms of accuracy and F1 score. It is observed that LSTM predicts rainfall with consistent accuracy of 82% for 1 to 6 days lead time while the performance of 1D CNN-LSTM and ANN are comparable to LSTM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.