Polycyclic aromatic hydrocarbons (PAHs) and potentially toxic trace elements (PTEs) soil contamination have become areas of concern. Bioaugmentation is regarded as an effective bioremediation method, however it is difficult to simultaneously degrade organic compounds and remove PTEs with individual microbial strains. Therefore, the objective of this study was to evaluate the feasibility of using immobilized microbial consortia, including two PAH-degrading bacterial strains (W1 and W2) and a Cr(VI)-reducing bacterium (Y2), for the remediation of pyrene-Cr(VI) co-contaminated soil. Three immobilization methods were investigated: (1) bacterial consortium adsorption onto biochar (BC), (2) bacterial consortium entrapment in alginate beads (AC), (3) bacterial consortium adsorption on biochar and sequential entrapment in alginate beads (BAC). In addition, a free bacterial consortium (FC) was also used for comparison. Ten treatments were designed to illustrate the bioremediation efficiency of the free and immobilized consortia. The results show that treatments AC and BAC resulted in more efficient Cr(VI) removal compared with BC and FC. Pyrene levels in AC and BAC microcosms were reduced from 42.33 ± 3.82 to 11.56 ± 1.37 and 7.48 ± 0.39 mg kg, respectively. Bioavailable Cr (VI) in AC and BAC was significantly lower than that in other microcosms after 28 days' incubation. Both AC and BAC microcosms exhibited a higher level of dehydrogenase and fluorescein diacetate hydrolysis activity. Furthermore, soil microbial diversity was higher in AC and BAC microcosms compared with the others. Thus, the entrapped consortia may be useful for bioremediation of pyrene and Cr (VI) without compromising soil ecology.
A bacterial isolate (G161) with high Cr(VI)-reducing capacity was isolated from Cr(VI)-contaminated soil and identified as Leucobacter sp. on the basis of 16S rRNA gene sequence analysis. The isolate was a Gram-positive, aerobic rod. The hexavalent chromate-reducing capability of the isolate was investigated under three conditions of oxygen stress. The isolate was found to reduce Cr(VI) under all conditions but performed most effectively during aerobic growth followed by facultative anaerobic incubation. Under these conditions, the isolate tolerated K(2)Cr(2)O(7) concentrations up to 1,000 mg/l and completely reduced 400 mg/l K(2)Cr(2)O(7) within 96 h. The strain reduced Cr(VI) over a wide range of pH (6.0-11.0) and temperatures (15-45 °C) with optimum performance at pH 8.0 and 35 °C. The presence of other metals, such as Ca(2+), Co(2+), Cu(2+), Mn(2+), Ni(2+), and Zn(2+), induced no effect or else played a stimulatory role on Cr(VI)-reduction activity of the strain. The strain was tested for Cr(VI) removal in wastewaters and proved capable of completely reducing the contained Cr(VI). This is the novel report of a bacterial growth and Cr(VI)-reduction process under sequential aerobic growth and facultative anaerobic conditions. The study suggested that the isolate possesses a distinct capability for Cr(VI) reduction which could be harnessed for the detoxification of chromate-contaminated wastewaters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.