Arsenic trioxide (As(2)O(3)) has been widely accepted as the second-best choice for the treatment of relapsed and refractory acute promyelocytic leukemia (APL) patients. However, a few studies have been conducted on a detailed speciation of As(2)O(3) metabolites in blood samples of patients. To clarify the speciation of arsenic, the blood samples were collected at various time points from a patient with APL after remission induction therapy and during consolidation therapy. The total amounts of arsenic in blood cells and plasma, and the plasma concentrations of inorganic arsenic and methylated metabolites were determined by inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography/ICP-MS, respectively. The total amounts of arsenic in the blood cells were 4-10 times higher than those in plasma. Among all arsenic metabolites, the pentavalent arsenate (As(V)) in plasma was more readily eliminated. During the drug-withdrawal period, the initial plasma concentrations of trivalent arsenic (As(III)) declined more rapidly than those of methylarsonic acid and dimethlyarsinic acid, which are known as the major methylated metabolites of As(III). On the other hand, during the consecutive administration in the consolidation therapy period, the plasma concentrations of total arsenic and arsenic metabolites increased with time. In conclusion, these results may support the idea that methylated metabolites of As(2)O(3) contribute to the efficacy of arsenic in APL patients. These results also suggest that detailed studies on the pharmacokinetics as well as the pharmacodynamics of As(2)O(3) in the blood cells from APL patients should be carried out to provide an effective treatment protocol.
The demand for rare earth elements has increased dramatically in recent years because of their numerous industrial applications, and considerable research efforts have consequently been directed toward recycling these materials. The accumulation of metals in microorganisms is a low-cost and environmentally friendly method for the recovery of metals present in the environment at low levels. Numerous metals, including rare earth elements, can be readily dissolved in aqueous acid, but the efficiency of metal biosorption is usually decreased under the acidic conditions. In this report, we have investigated the use of the sulfothermophilic red alga Galdieria sulphuraria for the recovery of metals, with particular emphasis on the recovery of rare earth metals. Of the five different growth conditions investigated where G. sulphuraria could undergo an adaptation process, Nd(III), Dy(III), and Cu(II) were efficiently recovered from a solution containing a mixture of different metals under semi-anaerobic heterotrophic condition at a pH of 2.5. G. sulphuraria also recovered Nd(III), Dy(III), La(III), and Cu(II) with greater than 90% efficiency at a concentration of 0.5 ppm. The efficiency remained unchanged at pH values in the range of 1.5-2.5. Furthermore, at pH values in the range of 1.0-1.5, the lanthanoid ions were collected much more efficiently into the cell fractions than Cu(II) and therefore successfully separated from the Cu(II) dissolved in the aqueous acid. Microscope observation of the cells using alizarin red suggested that the metals were accumulating inside of the cells. Experiments using dead cells suggested that this phenomenon was a biological process involving specific activities within the cells.
The demand for precious metals has increased in recent years. However, low concentrations of precious metals dissolved in wastewater are yet to be recovered because of high operation costs and technical problems. The unicellular red alga, Galdieria sulphuraria, efficiently absorbs precious metals through biosorption. In this study, over 90% of gold and palladium could be selectively recovered from aqua regia-based metal wastewater by using G. sulphuraria. These metals were eluted from the cells into ammonium solutions containing 0.2M ammonium salts without other contaminating metals. The use of G. sulphuraria is an eco-friendly and cost-effective way of recovering low concentrations of gold and palladium discarded in metal wastewater.
Highly efficient single-cell elemental analysis of microbial cells was achieved using a developed ICP-MS system with approximately 100% cell introduction efficiency and high time resolution.
We examined the short-term metabolic processes of arsenate for 24 h in a freshwater unicellular green alga, Chlamydomonas reinhardtii wild-type strain CC-125. The arsenic species in the algal extracts were identified by high-performance liquid chromatography/inductively coupled plasma mass spectrometry after water extraction using a sonicator. Speciation analyses of arsenic showed that the levels of arsenite, arsenate, and methylarsonic acid in the cells rapidly increased for 30 min to 1 h, and those of dimethylarsinic acid and oxo-arsenosugar-glycerol also tended to increase continuously for 24 h, while that of oxo-arsenosugar-phosphate was quite low and fluctuated throughout the experiment. These results indicate that this alga can rapidly biotransform arsenate into oxo-arsenosugar-glycerol for at least 10 min and then oxo-arsenosugar-phosphate through both reduction of incorporated arsenate to arsenite and methylation of arsenite and/or arsenate retained in the cells to dimethylarsinic acid via methylarsonic acid as an possible intermediate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.