p32 is an evolutionarily conserved and ubiquitously expressed multifunctional protein. Although p32 exists at diverse intra and extracellular sites, it is predominantly localized to the mitochondrial matrix near the nucleoid associated with mitochondrial transcription factor A. Nonetheless, its function in the matrix is poorly understood. Here, we determined p32 function via generation of p32-knockout mice. p32-deficient mice exhibited mid-gestation lethality associated with a severe developmental defect of the embryo. Primary embryonic fibroblasts isolated from p32-knockout embryos showed severe dysfunction of the mitochondrial respiratory chain, because of severely impaired mitochondrial protein synthesis. Recombinant p32 binds RNA, not DNA, and endogenous p32 interacts with all mitochondrial messenger RNA species in vivo. The RNA-binding ability of p32 is well correlated with the mitochondrial translation. Co-immunoprecipitation revealed the close association of p32 with the mitoribosome. We propose that p32 is required for functional mitoribosome formation to synthesize proteins within mitochondria.
whereas it did not appear to bind DNA. An isogenic dps-deficient mutant was more vulnerable to hydrogen peroxide than its parental strain, as judged by growth inhibition tests. The iron chelator Desferal restored the resistance of the Dps-deficient mutant to hydrogen peroxide, suggesting that this iron-binding protein prevented generation of hydroxyl radicals via the Fenton reaction. Dps was constitutively expressed during both exponential and stationary phase, and no induction was observed when the cells were exposed to H 2 O 2 or grown under iron-supplemented or iron-restricted conditions. On the basis of these data, we propose that this iron-binding protein in C. jejuni plays an important role in protection against hydrogen peroxide stress by sequestering intracellular free iron and is expressed constitutively to cope with the harmful effect of hydrogen peroxide stress on this microaerophilic organism without delay.
Fifty strains representing 38 species of the genus Legionella were examined for biofilm formation on glass, polystyrene, and polypropylene surfaces in static cultures at 25°C, 37°C, and 42°C. Strains of Legionella pneumophila, the most common causative agent of Legionnaires' disease, were found to have the highest ability to form biofilms among the test strains. The quantity, rate of formation, and adherence stability of L. pneumophila biofilms showed considerable dependence on both temperature and surface material. Glass and polystyrene surfaces gave between two-to sevenfold-higher yields of biofilms at 37°C or 42°C than at 25°C; conversely, polypropylene surface had between 2 to 16 times higher yields at 25°C than at 37°C or 42°C. On glass surfaces, the biofilms were formed faster but attached less stably at 37°C or 42°C than at 25°C. Both scanning electron microscopy and confocal laser scanning microscopy revealed that biofilms formed at 37°C or 42°C were mycelial mat like and were composed of filamentous cells, while at 25°C, cells were rod shaped. Planktonic cells outside of biofilms or in shaken liquid cultures were rod shaped. Notably, the filamentous cells were found to be multinucleate and lacking septa, but a recA null mutant of L. pneumophila was unaffected in its temperature-regulated filamentation within biofilms. Our data also showed that filamentous cells were able to rapidly give rise to a large number of short rods in a fresh liquid culture at 37°C. The possibility of this biofilm to represent a novel strategy by L. pneumophila to compete for proliferation among the environmental microbiota is discussed.
Vibrio cholerae O1 strain TSI-4 (El Tor, Ogawa) can shift to a rugose colony morphology from its normal translucent colony morphology in response to nutrient starvation. We have investigated differences between the rugose and translucent forms of V. cholerae O1 strain TSI-4. Electron microscopic examination of the rugose form of TSI-4 (TSI-4/R) revealed thick, electron-dense exopolysaccharide materials surrounding polycationic ferritin-stained cells, while the ferritin-stained material was absent around the translucent form of TSI-4 (TSI-4/T). The exopolysaccharide produced byV. cholerae TSI-4/R was found to have a composition ofN-acetyl-d-glucosamine,d-mannose, 6-deoxy-d-galactose, andd-galactose (7.4:10.2:2.4:3.0). The expression of an amorphous exopolysaccharide promotes biofilm development under static culture conditions. Biofilm formation by the rugose strain was determined by scanning electron microscopy, and most of the surface of the film was colonized by actively dividing rod cells. The corresponding rugose and translucent strains were compared for stress resistance. By having exopolysaccharide materials, the rugose strains acquired resistance to osmotic and oxidative stress. Our data indicated that an exopolysaccharide material on the surface of the rugose strain promoted biofilm formation and resistance to the effects of two stressing agents.
Colonies which varied in opacity were isolated from the four strains of Vibrio vulnificus. Opaque and translucent colonial types of the strains were distinguished from the corresponding parent strains. Variation in the opacity of colonies formed by each strain was accompanied by variation of capsular material formation, which was clarified by electron microscopy of the organisms stained with ruthenium red. The opaque-type colonies of the strains had capsular materials. On the other hand, three translucent-type colonies had no observable capsular materials, and one had incomplete capsular materials, in contrast to the corresponding opaque type. The corresponding opaque and translucent types of the strains were compared for points of virulence in mice and guinea pigs. By having capsular materials, the bacterial strains acquired resistance to serum bactericidal action, antiphagocytic activity, high lethality for mice, and strong invasiveness in the subcutaneous tissue of guinea pigs. Capsular materials of V. vulnificus were considered to be important for the expression of virulence. Vibrio vulnificus, a halophilic marine vibrio, is an occa
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.