Centriole duplication involves the growth of a procentriole next to the parental centriole. Mutations in STIL and CPAP/CENPJ cause primary microcephaly (MCPH). Here, we show that human STIL has an asymmetric localization to the daughter centriole and is required for procentriole formation. STIL levels oscillate during the cell cycle. Interestingly, STIL interacts directly with CPAP and forms a complex with hSAS6. A natural mutation of CPAP (E1235V) that causes MCPH in humans leads to significantly lower binding to STIL. Overexpression of STIL induced the formation of multiple procentrioles around the parental centriole. STIL depletion inhibited normal centriole duplication, Plk4-induced centriole amplification, and CPAP-induced centriole elongation, and resulted in a failure to localize hSAS6 and CPAP to the base of the nascent procentriole. Furthermore, hSAS6 depletion hindered STIL targeting to the procentriole, implying that STIL and hSAS6 are mutually dependent for their centriolar localization. Together, our results indicate that the two MCPH-associated proteins STIL and CPAP interact with each other and are required for procentriole formation, implying a central role of centriole biogenesis in MCPH.
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by
formation of renal cysts that destroy the kidney. Mutations in PKD1 and PKD2,
encoding polycystins-1 and -2, cause ADPKD. Polycystins are thought to function
in primary cilia, but it is not well understood how these and other proteins are
targeted to cilia. Here, we provide the first genetic and biochemical link
between polycystins and the exocyst, a highly-conserved eight-protein membrane
trafficking complex. We show that knockdown of exocyst component Sec10 yields
cellular phenotypes associated with ADPKD, including loss of flow-generated
calcium increases, hyperproliferation, and abnormal activation of MAPK. Sec10
knockdown in zebrafish phenocopies many aspects of polycystin-2
knockdown—including curly tail up, left-right patterning defects,
glomerular expansion, and MAPK activation—suggesting that the exocyst is
required for pkd2 function in vivo. We observe
a synergistic genetic interaction between zebrafish sec10 and
pkd2 for many of these cilia-related phenotypes.
Importantly, we demonstrate a biochemical interaction between Sec10 and the
ciliary proteins polycystin-2, IFT88, and IFT20 and co-localization of the
exocyst and polycystin-2 at the primary cilium. Our work supports a model in
which the exocyst is required for the ciliary localization of polycystin-2, thus
allowing for polycystin-2 function in cellular processes.
The relationship between structural and functional asymmetries in the brain remains unclear. A recent report describes a zebrafish mutant that provides us with some enticing clues about this relationship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.