Centriole duplication involves the growth of a procentriole next to the parental centriole. Mutations in STIL and CPAP/CENPJ cause primary microcephaly (MCPH). Here, we show that human STIL has an asymmetric localization to the daughter centriole and is required for procentriole formation. STIL levels oscillate during the cell cycle. Interestingly, STIL interacts directly with CPAP and forms a complex with hSAS6. A natural mutation of CPAP (E1235V) that causes MCPH in humans leads to significantly lower binding to STIL. Overexpression of STIL induced the formation of multiple procentrioles around the parental centriole. STIL depletion inhibited normal centriole duplication, Plk4-induced centriole amplification, and CPAP-induced centriole elongation, and resulted in a failure to localize hSAS6 and CPAP to the base of the nascent procentriole. Furthermore, hSAS6 depletion hindered STIL targeting to the procentriole, implying that STIL and hSAS6 are mutually dependent for their centriolar localization. Together, our results indicate that the two MCPH-associated proteins STIL and CPAP interact with each other and are required for procentriole formation, implying a central role of centriole biogenesis in MCPH.
Centrioles are cylindrical structures that are usually composed of nine triplets of microtubules (MTs) organized around a cartwheel-shaped structure. Recent studies have proposed a structural model of the SAS-6-based cartwheel, yet we do not know the molecular detail of how the cartwheel participates in centriolar MT assembly. In this study, we demonstrate that the human microcephaly protein, CEP135, directly interacts with hSAS-6 via its carboxyl-terminus and with MTs via its amino-terminus. Unexpectedly, CEP135 also interacts with another microcephaly protein CPAP via its amino terminal domain. Depletion of CEP135 not only perturbed the centriolar localization of CPAP, but also blocked CPAP-induced centriole elongation. Furthermore, CEP135 depletion led to abnormal centriole structures with altered numbers of MT triplets and shorter centrioles. Overexpression of a CEP135 mutant lacking the proper interaction with hSAS-6 had a dominantnegative effect on centriole assembly. We propose that CEP135 may serve as a linker protein that directly connects the central hub protein, hSAS-6, to the outer MTs, and suggest that this interaction stabilizes the proper cartwheel structure for further CPAP-mediated centriole elongation.
CEP120 cooperates with CPAP to promote centriole elongation in a cell cycle– and microtubule-dependent manner.
Centriole duplication is a tightly ordered process during which procentrioles are assembled in G1-S and elongate during S and G2. Here, we show that human CEP295 (Drosophila Ana1) is not essential for initial cartwheel assembly, but is required to build distal half centrioles during S and G2. Using super-resolution and immunogold electron microscopy, we demonstrate that CEP295 is recruited to the proximal end of procentrioles in early S phase, when it is also localized at the centriolar microtubule wall that surrounds the human SAS6 cartwheel hub. Interestingly, depletion of CEP295 not only inhibits the recruitments of POC5 and POC1B to the distal half centrioles in G2, resulting in shorter centrioles, it also blocks the posttranslational modification of centriolar microtubules (e.g. acetylation and glutamylation). Importantly, our results indicate that CEP295 directly interacts with microtubules, and that excess CEP295 could induce the assembly of overly long centrioles. Furthermore, exogenous expression of the N-terminal domain of CEP295 exerts a dominantnegative effect on centriole elongation. Collectively, these findings suggest that CEP295 is essential for building the distal half centrioles and for post-translational modification of centriolar microtubules.
Centrosomal protein 120 (CEP120) was originally identified as a daughter centriole-enriched protein that participates in centriole elongation. Recent studies showed that CEP120 gene mutations cause complex ciliopathy phenotypes in humans, including Joubert syndrome and Jeune asphyxiating thoracic dystrophy, suggesting that CEP120 plays an additional role in ciliogenesis. To investigate the potential roles of CEP120 in centriole elongation and cilia formation, we knocked out the CEP120 gene in p53-deficient RPE1 cells using the CRISPR/Cas9 editing system, and performed various analyses. We herein report that loss of CEP120 produces short centrioles with no apparent distal and subdistal appendages. CEP120 knockout was also associated with defective centriole elongation, impaired recruitment of C2CD3 and Talpid3 to the distal ends of centrioles, and consequent defects in centriole appendage assembly and cilia formation. Interestingly, wild-type CEP120 interacts with C2CD3 and Talpid3, whereas a disease-associated CEP120 mutant (I975S) has a low affinity for C2CD3 binding and perturbs cilia assembly. Together, our findings reveal a novel role of CEP120 in ciliogenesis by showing that it interacts with C2CD3 and Talpid3 to assemble centriole appendages and by illuminating the molecular mechanism through which the CEP120 (I975S) mutation causes complex ciliopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.