Covalent organic frameworks (COFs)
are a promising category of
porous materials possessing extensive chemical tunability, high porosity,
ordered arrangements at a molecular level, and considerable chemical
stability. Despite these advantages, the application of COFs as membrane
materials for gas separation is limited by their relatively large
pore apertures (typically >0.5 nm), which exceed the sieving requirements
for most gases whose kinetic diameters are less than 0.4 nm. Herein,
we report the fabrication of ultrathin two-dimensional (2D) membranes
through layer-by-layer (LbL) assembly of two kinds of ionic covalent
organic nanosheets (iCONs) with different pore sizes and opposite
charges. Because of the staggered packing of iCONs with strong electrostatic
interactions, the resultant membranes exhibit features of reduced
aperture size, optimized stacking pattern, and compact dense structure
without sacrificing thickness control, which are suitable for molecular
sieving gas separation. One of the hybrid membranes, TpEBr@TpPa-SO3Na with a thickness of 41 nm, shows a H2 permeance
of 2566 gas permeation units (GPUs) and a H2/CO2 separation factor of 22.6 at 423 K, surpassing the recent Robeson
upper bound along with long-term hydrothermal stability. This strategy
provides not only a high-performance H2 separation membrane
candidate but also an inspiration for pore engineering of COF or 2D
porous polymer membranes.
Metal-organic cages (MOCs) are discrete molecular assemblies formed by coordination bonds between metal nodes and organic ligands. The application of MOCs has been greatly limited due to their poor stability, especially in aqueous solutions. In this work, we thoroughly investigate the stability of several Zr-MOCs and reveal their excellent stability in aqueous solutions with acidic, neutral, and weak basic conditions. In addition, we present for the first time a process-tracing study on the postassembly modification of one MOC, ZrT-1-NH, highlighting the excellent stability and versatility of Zr-MOCs as a new type of molecular platform for various applications.
Zirconiumv (IV)-carboxylate metal-organic framework (MOF) UiO-66 nanoparticles were successfully synthesized and incorporated in the polyamide (PA) selective layer to fabricate novel thin-film nanocomposite (TFN) membranes. Compared to unmodified pure polyamide thin-film composite (TFC) membranes, the incorporation of UiO-66 nanoparticles significantly changes the membrane morphology and chemistry, leading to an improvement of intrinsic separation properties due to the molecular sieving and superhydrophilic nature of UiO-66 particles. The best performing TFN-U2 (0.1 wt % particle loading) membrane not only shows a 52% increase of water permeability but also maintains salt rejection levels (∼95%) similar to the benchmark. The effects of UiO-66 loading on the forward osmosis (FO) performance were also investigated. Incorporation of 0.1 wt % UiO-66 produced a maximum water flux increase of 40% and 25% over the TFC control under PRO and FO modes, when 1 M NaCl was used as the draw solution against deionized water feed. Meanwhile, solute reverse flux was maintained at a relatively low level. In addition, TFN-U2 membrane displayed a relatively linear increase in FO water flux with increasing NaCl concentration up to 2.0 M, suggesting a slightly reduced internal concentration polarization effect. To our best knowledge, the current study is the first to consider implementation of Zr-MOFs (UiO-66) onto TFN-FO membranes.
As primary feedstocks in the petrochemical industry, light olefins such as ethylene and propylene are mainly obtained from steam cracking of naphtha and short chain alkanes (ethane and propane). Due to their similar physical properties, the separations of olefins and paraffins—pivotal processes to meet the olefin purity requirement of downstream processing—are typically performed by highly energy‐intensive cryogenic distillation at low temperatures and high pressures. To reduce the energy input and save costs, adsorptive olefin/paraffin separations have been proposed as promising techniques to complement or even replace cryogenic distillation, and growing efforts have been devoted to developing advanced adsorbents to fulfill this challenging task. In this Review, a holistic view of olefin/paraffin separations is first provided by summarizing how different processes have been established to leverage the differences between olefins and paraffins for effective separations. Subsequently, recent advances in the development of porous materials for adsorptive olefin/paraffin separations are highlighted with an emphasis on different separation mechanisms. Last, a perspective on possible directions to push the limit of the research in this field is presented.
We report an in situ polymerization strategy to incorporate a thermo‐responsive polymer, poly(N‐isopropylacrylamide) (PNIPAM), with controlled loadings into the cavity of a mesoporous metal–organic framework (MOF), MIL‐101(Cr). The resulting MOF/polymer composites exhibit an unprecedented temperature‐triggered water capture and release behavior originating from the thermo‐responsive phase transition of the PNIPAM component. This result sheds light on the development of stimuli‐responsive porous adsorbent materials for water capture and heat transfer applications under relatively mild operating conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.