We investigated the mechanisms of amyloidlike aggregation and gel formation in hen egg-white lysozyme (HEWL) in a mixed solvent comprising 90% v/v ethanol in water using dynamic light scattering (DLS) and circular dichroism CD. The mechanism of HEWL in ethanol aqueous solution is interpreted into three stages as: (I) denaturation of HEWL; (II) elongation of amyloid fibrils composed of β-sheet-rich HEWL by lateral aggregation; and (III) gel formation due to the creation of junctions in amyloid fibrils. The transformation of sol to gel can be confirmed by: (1) the oscillation behavior and the rapid increase in the intensity of scattered light; (2) the power-law behavior of the correlation function of scattered light g (2) (t); (3) the appearance of a long-time tail in the distribution function of the decay time G(τ); and (4) the beginning of the reduction in initial amplitude in g (2) (t). The gelation rate was strongly dependent on the protein concentration. The estimated rod length of the amyloid fibrils increased significantly over time. Scanning electron microscopy (SEM) performed on the formation of fibrils in the HEWL gels revealed that the structure was highly heterogeneous, with areas characterized by dense fiber networks interspersed with loose network areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.