Cyclic nitroxides are a diverse range of stable free radicals that have unique antioxidant properties. Because of their ability to interact with free radicals, they have been used for many years as biophysical tools. During the past 15-20 years, however, many interesting biochemical interactions have been discovered and harnessed for therapeutic applications. Biologically relevant effects of nitroxides have been described including their ability to degrade superoxide and peroxide, inhibit Fenton reactions and undergo radical-radical recombination. Cellular studies defined the activity of nitroxides in vitro. By modifying oxidative stress and altering the redox status of tissues, nitroxides have been found to interact with and alter many metabolic processes. These interactions can be exploited for therapeutic and research use including protection against ionizing radiation, as probes in functional magnetic resonance imaging, cancer prevention and treatment, control of hypertension and weight, and protection from damage resulting from ischemia/reperfusion injury. While much remains to be done, many applications have been well studied and some are presently being tested in clinical trials. The therapeutic and research uses of nitroxide compounds are reviewed here with a focus on the progress from initial development to modern trials.
Objectives In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrosative stress, cell death and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose. Background CBD, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts antiinflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans. Methods Left ventricular function was measured by pressure-volume system. Oxidative stress, cell death and fibrosis markers were evaluated by molecular biology/biochemical techniques, electron spin resonance spectroscopy and flow cytometry. Results Diabetic cardiomyopathy was characterized by declined diastolic and systolic myocardial performance associated with increased oxidative-nitrosative stress, NF-κB and MAPK (JNK and p-38, p38α) activation, enhanced expression of adhesion molecules (ICAM-1, VCAM-1), TNF-α, markers of fibrosis (TGF-β, CTGF, fibronectin, collagen-1, MMP-2 and MMP-9), enhanced cell death (caspase 3/7 and PARP activity, chromatin fragmentation and TUNEL) and diminished Akt phosphorylation. Remarkably, CBD attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrosative stress, inflammation, cell death, and interrelated signaling pathways. Furthermore, CBD also attenuated the high glucose-induced increased reactive oxygen species generation, NF-κB activation and cell death in primary human cardiomyocytes. Conclusions Collectively, these results coupled with the excellent safety and tolerability profile of cannabidiol in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrosative stress, inflammation, cell death and fibrosis.
SummaryWe have previously reported that T cells bearing T cell receptors (TCRs) of 3`//$ type appear at a relatively early stage of primary infection with Listeria monocytogenes in mice. To characterize the early-appearing 3`//$ T cells during listeriosis, we analyzed the specificity and cytokine production of the 3`//$ T cells in the peritoneal cavity in mice inoculated intraperitoneally with a sublethal dose of L. monocytogenes. The early-appearing 3'//$ T cells, most of which were of CD4-CD8-phenotype, proliferated and secreted IFN-3' and macrophage chemotactic factor in response to purified protein derivative from Mycobacterium tuberculosis, or recombinant 65-kD heat-shock protein derived from M. bov/s but not to heat-killed Listeria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.