Cyclic nitroxides are a diverse range of stable free radicals that have unique antioxidant properties. Because of their ability to interact with free radicals, they have been used for many years as biophysical tools. During the past 15-20 years, however, many interesting biochemical interactions have been discovered and harnessed for therapeutic applications. Biologically relevant effects of nitroxides have been described including their ability to degrade superoxide and peroxide, inhibit Fenton reactions and undergo radical-radical recombination. Cellular studies defined the activity of nitroxides in vitro. By modifying oxidative stress and altering the redox status of tissues, nitroxides have been found to interact with and alter many metabolic processes. These interactions can be exploited for therapeutic and research use including protection against ionizing radiation, as probes in functional magnetic resonance imaging, cancer prevention and treatment, control of hypertension and weight, and protection from damage resulting from ischemia/reperfusion injury. While much remains to be done, many applications have been well studied and some are presently being tested in clinical trials. The therapeutic and research uses of nitroxide compounds are reviewed here with a focus on the progress from initial development to modern trials.
The article reviews agents in clinical use or in development as radioprotectors and mitigators of radiation-induced normal tissue injury.
Nitroxide radicals are paramagnetic contrast agents, used in magnetic resonance imaging (MRI), that also exert antioxidant effects. Participating in cellular redox reactions, they lose their ability to provide contrast as a function of time after administration. In this study, the rate of contrast loss was correlated to the reducing power of the tissue or the ''redox status.'' The preferential reduction of nitroxides in tumors compared with normal tissue was observed by MRI. The influence of the structure of the nitroxide on the reduction rate was investigated by MRI using two cell-permeable nitroxides, 4-hydroxy-2,2,6,6,-tetramethyl-1-piperidynyloxyl (Tempol) and 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3CP), and one cell-impermeable nitroxide, 3-carboxy-2, 2,5,5,5-tetramethylpyrrolidine-1-oxyl (3CxP). Pharmacokinetic images of these nitroxides in normal tissue, tumor, kidney, and artery regions in mice were simultaneously obtained using MRI. The decay of Tempol and 3CP in tumor tissue was significantly faster than in normal tissue. No significant change in the total nitroxide (oxidized + reduced forms) was noted from tissue extracts, suggesting that the loss in contrast as a function of time is a result of intracellular bioreduction. However, in the case of 3CxP (membrane impermeable), there was no difference in the reduction rates between normal and tumor tissue. The time course of T 1 enhancement by 3CxP and the total amount of 3CxP (oxidized + reduced) in the femoral region showed similar pharmacokinetics. These results show that the differential bioreduction of cell-permeable nitroxides in tumor and normal tissue is supported by intracellular processes and the reduction rates are a means by which the intracellular redox status can be assessed noninvasively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.