A miniaturized sample preparation technique that uses a fine-fiber-packed needle as the extraction medium is reviewed, especially in relation to its application to the analysis of volatile organic compounds by gas chromatography. When the needle was packed longitudinally with a bundle of fine filaments (12 microm o.d.) which were also surface-coated with polymeric materials, successful sample preconcentration was obtained. Improved sensitivity was also established by introducing simultaneous derivatization reactions into the extraction process in the fiber-packed needle. The storage performance of the needle clearly demonstrated the potential of the technique for typical on-site sampling during environmental analysis. In this short review, the fiber-packed extraction needle developed by the authors is summarized along with applications that use the fiber-packed needle as a miniaturized extraction device.
Novel polymer-coated fiber-packed microcolumns in liquid chromatography (LC) have been developed. Typical polymeric materials, such as polydimethylsiloxane and polyethyleneglycol, which are conventional stationary phases of capillary columns in gas chromatography (GC), have been employed as coating materials onto the surface of fine filaments. Packed longitudinally with a bundle of polymer-coated filaments into a stainless-steel capillary of 0.8 mm i.d., 150 mm length, several types of polymer-coated fiber-packed columns were prepared, and the retention behavior of aromatic compounds on these columns has been studied. A good linear relationship was obtained for van't Hoff plots over the temperature range between 0 and 200 C, clearly indicating an excellent heat-resistant property of these polymer-coated fibrous stationary phases. Taking advantage of the heat-resistant feature of the fibrous stationary phases, the separation of several test mixtures with temperature-programmed elution was studied, where a solvent gradient program was additionally introduced if needed. Separation was also carried out with pure water as the mobile phase using an appropriate temperature program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.