The magnetization direction of a metallic magnet has generally been controlled by a magnetic field or by spin-current injection into nanosized magnetic cells. Both these methods use an electric current to control the magnetization direction; therefore, they are energy consuming. Magnetization control using an electric field is considered desirable because of its expected ultra-low power consumption and coherent behaviour. Previous experimental approaches towards achieving voltage control of magnetization switching have used single ferromagnetic layers with and without piezoelectric materials, ferromagnetic semiconductors, multiferroic materials, and their hybrid systems. However, the coherent control of magnetization using voltage signals has not thus far been realized. Also, bistable magnetization switching (which is essential in information storage) possesses intrinsic difficulties because an electric field does not break time-reversal symmetry. Here, we demonstrate a coherent precessional magnetization switching using electric field pulses in nanoscale magnetic cells with a few atomic FeCo (001) epitaxial layers adjacent to a MgO barrier. Furthermore, we demonstrate the realization of bistable toggle switching using the coherent precessions. The estimated power consumption for single switching in the ideal equivalent switching circuit can be of the order of 10(4)k(B)T, suggesting a reduction factor of 1/500 when compared with that of the spin-current-injection switching process.
We investigated the voltage-induced perpendicular magnetic anisotropy change in an epitaxial magnetic tunnel junction (MTJ) with an ultrathin FeCo layer. Tunneling magnetoresistance (TMR) curves were measured under various bias voltage applications for different FeCo thicknesses. Clear changes in the shape of TMR curves were observed depending on the voltage-controlled perpendicular magnetic anisotropy. By evaluating the relative angle of two ferromagnetic layers, we could estimate the anisotropy energy change quantitatively. The realization of voltage-induced anisotropy change in the MTJ structure makes it possible to control the magnetization dynamics, leading to a new area of electric-field-based spintronics devices. #
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.