Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1–5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.
BackgroundThis research paper presents a valid treatment strategy for recurrent glioblastoma multiforme (GBM) using hypofractionated stereotactic radiotherapy by intensity modulated radiation therapy (HS-IMRT) planned with 11C-methionine positron emission tomography (MET-PET)/computed tomography (CT)/magnetic resonance imaging (MRI) fusion.MethodsTwenty-one patients with recurrent GBM received HS-IMRT planned by MET-PET/CT/MRI. The region of increased amino acid tracer uptake on MET-PET was defined as the gross tumor volume (GTV). The planning target volume encompassed the GTV by a 3-mm margin. Treatment was performed with a total dose of 25- to 35-Gy, given as 5- to 7-Gy daily for 5 days.ResultsWith a median follow-up of 12 months, median overall survival time (OS) was 11 months from the start of HS-IMRT, with a 6-month and 1-year survival rate of 71.4% and 38.1%, respectively. Karnofsky performance status was a significant prognostic factor of OS as tested by univariate and multivariate analysis. Re-operation rate was 4.8% for radiation necrosis. No other acute or late toxicity Grade 3 or higher was observed.ConclusionsThis is the first prospective study of biologic imaging optimized HS-IMRT in recurrent GBM. HS-IMRT with PET data seems to be well tolerated and resulted in a median survival time of 11 months after HS-IMRT.
A patient with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) was studied with serial diffusion-weighted MRI (DWI) after stroke-like episodes and the apparent diffusion coefficient (ADC) was measured in an infarct-like lesion. In the acute and subacute stages, the affected area gave high signal on DWI and its ADC was much lower than that in a normal control region. In the chronic stage, the ADC became higher than that in normal brain. We therefore suggest that the stroke-like episodes did not cause vasogenic oedema but were related to energy failure and cytotoxic oedema.
Background We aimed to elucidate differences in the characteristics of patients with coronavirus disease 2019 (COVID-19) requiring hospitalization in Japan, by COVID-19 waves, from conventional strains to the Delta variant. Methods We used secondary data from a database and performed a retrospective cohort study that included 3261 patients aged ≥ 18 years enrolled from 78 hospitals that participated in the Japan COVID-19 Task Force between February 2020 and September 2021. Results Patients hospitalized during the second (mean age, 53.2 years [standard deviation {SD}, ± 18.9]) and fifth (mean age, 50.7 years [SD ± 13.9]) COVID-19 waves had a lower mean age than those hospitalized during the other COVID-19 waves. Patients hospitalized during the first COVID-19 wave had a longer hospital stay (mean, 30.3 days [SD ± 21.5], p < 0.0001), and post-hospitalization complications, such as bacterial infections (21.3%, p < 0.0001), were also noticeable. In addition, there was an increase in the use of drugs such as remdesivir/baricitinib/tocilizumab/steroids during the latter COVID-19 waves. In the fifth COVID-19 wave, patients exhibited a greater number of presenting symptoms, and a higher percentage of patients required oxygen therapy at the time of admission. However, the percentage of patients requiring invasive mechanical ventilation was the highest in the first COVID-19 wave and the mortality rate was the highest in the third COVID-19 wave. Conclusions We identified differences in clinical characteristics of hospitalized patients with COVID-19 in each COVID-19 wave up to the fifth COVID-19 wave in Japan. The fifth COVID-19 wave was associated with greater disease severity on admission, the third COVID-19 wave had the highest mortality rate, and the first COVID-19 wave had the highest percentage of patients requiring mechanical ventilation.
To elucidate the host genetic loci affecting severity of SARS-CoV-2 infection, or Coronavirus disease 2019 (COVID-19), is an emerging issue in the face of the current devastating pandemic. Here, we report a genome-wide association study (GWAS) of COVID-19 in a Japanese population led by the Japan COVID-19 Task Force, as one of the initial discovery GWAS studies performed on a non-European population. Enrolling a total of 2,393 cases and 3,289 controls, we not only replicated previously reported COVID-19 risk variants (e.g., LZTFL1, FOXP4, ABO, and IFNAR2), but also found a variant on 5p35 (rs60200309-A at DOCK2) that was significantly associated with severe COVID-19 in younger (<65 years of age) patients with a genome-wide significant p-value of 1.2 × 10-8 (odds ratio = 2.01, 95% confidence interval = 1.58-2.55). This risk allele was prevalent in East Asians, including Japanese (minor allele frequency [MAF] = 0.097), but rarely found in Europeans. Cross-population Mendelian randomization analysis made a causal inference of a number of complex human traits on COVID-19. In particular, obesity had a significant impact on severe COVID-19. The presence of the population-specific risk allele underscores the need of non-European studies of COVID-19 host genetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.