Background: When endoscopic retrograde cholangiopancreatography (ERCP) guided bile duct biopsy fails to demonstrate malignancy, it remains unclear how to manage patients with presumably malignant strictures. Aims: To evaluate the value of intraductal ultrasonography (IDUS) when bile duct biopsy is negative. Methods: Sixty two patients with strictures of the bile duct were studied prospectively. During ERCP, IDUS was performed using an ultrasonic probe (diameter 2.0 mm; frequency 20 MHz). Following IDUS, a bile duct biopsy was performed using forceps (diameter 1.8 mm). The IDUS images of the tumour were classified as polypoid lesions, localised wall thickening, intraductal sessile tumours, sessile tumour outside of the bile duct, or absence of apparent lesion. The bile duct wall structures at the site of the tumour as well as the maximum diameter of the tumour were also analysed. The IDUS findings were compared with the histological findings or clinical course. Results: When the IDUS images showed a polypoid lesion (n=19), localised wall thickening (n=8), intraductal sessile tumour (n=13), and sessile tumour outside of the bile duct (n = 20), the sensitivities of the biopsy were 80%, 50%, 92%, and 53%, respectively. Multiple regression analysis showed that the presence of sessile tumour (intraductal or outside of the bile duct: p<0.05), tumour size greater than 10.0 mm (p<0.001), and interrupted wall structure (p<0.05) were independent variables that predicted malignancy.
Conclusion:When biopsy fails to demonstrate evidence of malignancy, the presence of sessile tumour (intraductal or outside of the bile duct), tumour size greater than 10.0 mm, and interrupted wall structure on IDUS images are factors that can predict malignancy.
Pancreatic stellate cells (PSCs) are activated during pancreatitis and promote pancreatic fibrosis by producing and secreting ECMs such as collagen and fibronectin. IL-1beta has been assumed to participate in pancreatic fibrosis by activating PSCs. Activated PSCs secrete various cytokines that regulate PSC function. In this study, we have examined IL-1beta secretion from culture-activated PSCs as well as its regulatory mechanism. RT-PCR and ELISA have demonstrated that PSCs express IL-1beta mRNA and secrete IL-1beta peptide. Inhibition of TGF-beta(1) activity secreted from PSCs by TGF-beta(1)-neutralizing antibody attenuated IL-1beta secretion from PSCs. Exogenous TGF-beta(1) increased IL-1beta expression and secretion by PSCs in a dose-dependent manner. Adenovirus-mediated expression of dominant-negative (dn)Smad2/3 expression reduced both basal and TGF-beta(1)-stimulated IL-1beta expression and secretion by PSCs. Coexpression of Smad3 with dnSmad2/3 restored IL-1beta expression and secretion by PSCs, which were attenuated by dnSmad2/3 expression. In contrast, coexpression of Smad2 with dnSmad2/3 did not alter them. Furthermore, inhibition of IL-1beta activity secreted from PSCs by IL-1beta-neutralizing antibody attenuated TGF-beta(1) secretion from PSCs. Exogenous IL-1beta enhanced TGF-beta(1) expression and secretion by PSCs. IL-1beta activated ERK, and PD-98059, a MEK1 inhibitor, blocked IL-1beta enhancement of TGF-beta(1) expression and secretion by PSCs. We propose that an autocrine loop exists between TGF-beta(1) and IL-1beta in activated PSCs through Smad3- and ERK-dependent pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.