The moenomycins are phosphoglycolipid antibiotics produced by Streptomyces ghanaensis and related organisms. The phosphoglycolipids are the only known active site inhibitors of the peptidoglycan glycosyltransferases, an important family of enzymes involved in the biosynthesis of the bacterial cell wall. Although these natural products have exceptionally potent antibiotic activity, pharmacokinetic limitations have precluded their clinical use. We previously identified the moenomycin biosynthetic gene cluster in order to facilitate biosynthetic approaches to new derivatives. Here we report a comprehensive set of genetic and enzymatic experiments that establish functions for the seventeen moenomycin biosynthetic genes involved in the synthesis moenomycin and variants. These studies reveal the order of assembly of the full molecular scaffold and define a subset of seven genes involved in the synthesis of bioactive analogs. This work will enable both in vitro and fermentation-based reconstitution of phosphoglycolipid scaffolds so that chemoenzymatic approaches to novel analogs can be explored.
Peptidoglycan glycosyltransferases (PGTs), enzymes that catalyze the formation of the glycan chains of the bacterial cell wall, have tremendous potential as antibiotic targets. The moenomycins, a potent family of natural product antibiotics, are the only known active site inhibitors of the PGTs and serve as blueprints for the structure-based design of new antibacterials. A 2.8 Å structure of a Staphylococcus aureus PGT with moenomycin A bound in the active site appeared recently, potentially providing insight into substrate binding; however, the protein:ligand contacts were not analyzed in detail and the implications of the structure for inhibitor design were not addressed. We report here the 2.3 Å structure of a complex of neryl-moenomycin A bound to the PGT domain of Aquifex aeolicus PBP1A. The structure allows us to examine protein:ligand contacts in detail, and implies that six conserved active site residues contact the centrally-located F-ring phosphoglycerate portion of neryl-moenomycin A. A mutational analysis shows that all six residues play important roles in enzymatic activity. We suggest that small scaffolds that maintain these key contacts will serve as effective PGT inhibitors. To test this hypothesis, we have prepared, via heterologous expression of a subset of moenomycin biosynthetic genes, a novel moenomycin intermediate that maintains these six contacts but does not contain the putative minimal pharmacophore. This compound has comparable biological activity to the previously proposed minimal pharmacophore. The results reported here may facilitate the design of antibiotics targeted against peptidoglycan glycosyltransferases.
We have developed a simple and totally in vitro selection procedure based on cell-free cotranslation using a highly stable and efficient in vitro virus (IVV). Cell-free cotranslation of tagged bait and prey proteins is advantageous for the formation of protein complexes and allows high-throughput analysis of protein-protein interactions (PPI) as a result of providing in vitro instead of in vivo preparation of bait proteins. The use of plural selection rounds and a two-step purification of the IVV selection, followed by in vitro post-selection, is advantageous for decreasing false positives. In a single experiment using bait Fos, more than 10 interactors, including not only direct, but also indirect interactions, were enriched. Further, previously unidentified proteins containing novel leucine zipper (L-ZIP) motifs with minimal binding sites identified by sequence alignment as functional elements were detected as a result of using a randomly primed cDNA library. Thus, we consider that this simple IVV selection system based on cell-free cotranslation could be applicable to high-throughput and comprehensive analysis of PPI and complexes in large-scale settings involving parallel bait proteins.
A 36-step synthesis was carried out in automated synthesizers to provide a synthetic key intermediate of taxol. A key step involved a microwave-assisted alkylation reaction to construct the ABC ring system from an AC precursor. Subsequent formation of the D ring afforded baccatin III, a well-known precursor of taxol.
For high-throughput in vitro protein selection using genotype (mRNA)-phenotype (protein) fusion formation and C-terminal protein labeling as a post-selection analysis, it is important to improve the stability and efficiency of mRNA templates for both technologies. Here we describe an efficient single-strand ligation (90% of the input mRNAs) using a fluorescein-conjugated polyethylene glycol puromycin (Fluor-PEG Puro) spacer. This ligation provides a stable c-jun mRNA with a flexible Fluor-PEG Puro spacer for efficient fusion formation (70% of the input mRNA with the PEG spacer) in a cell-free wheat germ translation system. When using a 5' untranslated region including SP6 promoter and Omega29 enhancer (a part of tobacco mosaic virus Omega), an A(8) sequence (eight consecutive adenylate residues) at the 3' end is suitable for fusion formation, while an XA(8) sequence (XhoI and the A(8) sequence) is suitable for C-terminal protein labeling. Further, we report that Fluor-PEG N-t-butyloxycarbonylpuromycin [Puro(Boc)] spacer enhances the stability and efficiency of c-jun mRNA template for C-terminal protein labeling. These mRNA templates should be useful for puromycin-based technologies (fusion formation and C-terminal protein labeling) to facilitate high-throughput in vitro protein selection for not only evolutionary protein engineering, but also proteome exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.