Peptidoglycan is an essential polymer that forms a protective shell around bacterial cell membranes. Peptidoglycan biosynthesis is the target of many clinically used antibiotics, including the -lactams, imipenems, cephalosporins, and glycopeptides. Resistance to these and other antibiotics has prompted interest in an atomic-level understanding of the enzymes that make peptidoglycan. Representative structures have been reported for most of the enzymes in the pathway. Until now, however, there have been no structures of any peptidoglycan glycosyltransferases (also known as transglycosylases), which catalyze formation of the carbohydrate chains of peptidoglycan from disaccharide subunits on the bacterial cell surface. We report here the 2.1-Å crystal structure of the peptidoglycan glycosyltransferase (PGT) domain of Aquifex aeolicus PBP1A. The structure has a different fold from all other glycosyltransferase structures reported to date, but it bears some resemblance to -lysozyme, an enzyme that degrades the carbohydrate chains of peptidoglycan. An analysis of the structure, combined with biochemical information showing that these enzymes are processive, suggests a model for glycan chain polymerization.antibiotic resistance ͉ penicillin-binding protein ͉ cell wall ͉ transglycosylase T he major component of the bacterial cell wall is a cross-linked glycopeptide polymer called peptidoglycan. This polymer surrounds the cytoplasmic membrane of bacteria and functions as an exoskeleton, maintaining cell shape and stabilizing the membrane against fluctuations in osmotic pressure. Peptidoglycan is synthesized in an intracellular phase in which UDP-Nacetylglucosamine is converted to a diphospholipid-linked disaccharide-pentapeptide known as Lipid II, and in an extracellular phase in which the disaccharide (NAG-NAM) subunits of translocated Lipid II are coupled by peptidoglycan glycosyltransferases (PGTs; also known as transglycosylases) to form linear carbohydrate chains ( Fig. 1), which are cross-linked through the attached peptide moieties by transpeptidases (1). A functioning peptidoglycan pathway is required for bacterial cell growth and division, and compounds that inhibit peptidoglycan biosynthesis have antibiotic activity (2). For example, the -lactams, which have been used for decades to treat bacterial infections, irreversibly inhibit the transpeptidases. The emergence of resistance to -lactams and other clinically used antibiotics has prompted intense interest in understanding peptidoglycan biosynthesis in detail. Major advances have been made in recent years with respect to the characterization of key biosynthetic enzymes (3-5). Several structures have been reported for enzymes that catalyze transpeptidation (6, 7), but no PGT structures have been described.PGTs are defined by the presence of five conserved sequence motifs ( Fig. 2A) and exist in two forms: (i) as N-terminal glycosyltransferase domains in bifunctional proteins that also contain a C-terminal transpeptidase domain [called class A penicillin-bindi...
Bacterial cells are surrounded by a cross-linked polymer called peptidoglycan, the integrity of which is necessary for cell survival. The carbohydrate chains that form the backbone of peptidoglycan are made by peptidoglycan glycosyltransferases (PGTs), highly conserved membrane-bound enzymes that are thought to be excellent targets for the development of new antibacterials. Although structural information on these enzymes recently became available, their mechanism is not well understood because of a dearth of methods to monitor PGT activity. Here we describe a direct, sensitive, and quantitative SDS-PAGE method to analyze PGT reactions. We apply this method to characterize the substrate specificity and product length profile for two different PGT domains, PBP1A from Aquifex aeolicus and PBP1A from Escherichia coli. We show that both disaccharide and tetrasaccharide diphospholipids (Lipid II and Lipid IV) serve as substrates for these PGTs, but the product distributions differ significantly depending on which substrate is used as the starting material. Reactions using the disaccharide substrate are more processive and yield much longer glycan products than reactions using the tetrasaccharide substrate. We also show that the SDS-PAGE method can be applied to provide information on the roles of invariant residues in catalysis. A comprehensive mutational analysis shows that the biggest contributor to turnover of 14 mutated residues is an invariant glutamate located in the center of the active site cleft. The assay and results described provide new information about the process by which PGTs assemble bacterial cell walls.
Wall teichoic acids (WTAs) are anionic polymers that decorate the cell walls of many gram-positive bacteria. These structures are essential for survival or virulence in many organisms, which makes the enzymes involved in their biosynthesis attractive targets for the development of new antibacterial agents. We present a strategy to obtain WTA biosynthetic intermediates that involves a combination of chemical and enzymatic transformations. Using these intermediates, we have reconstituted the first two committed steps in the biosynthetic pathway. This work enables the exploration of WTA-synthesizing enzymes as antibiotic targets.
Peptidoglycan glycosyltransferases (PGTs), enzymes that catalyze the formation of the glycan chains of the bacterial cell wall, have tremendous potential as antibiotic targets. The moenomycins, a potent family of natural product antibiotics, are the only known active site inhibitors of the PGTs and serve as blueprints for the structure-based design of new antibacterials. A 2.8 Å structure of a Staphylococcus aureus PGT with moenomycin A bound in the active site appeared recently, potentially providing insight into substrate binding; however, the protein:ligand contacts were not analyzed in detail and the implications of the structure for inhibitor design were not addressed. We report here the 2.3 Å structure of a complex of neryl-moenomycin A bound to the PGT domain of Aquifex aeolicus PBP1A. The structure allows us to examine protein:ligand contacts in detail, and implies that six conserved active site residues contact the centrally-located F-ring phosphoglycerate portion of neryl-moenomycin A. A mutational analysis shows that all six residues play important roles in enzymatic activity. We suggest that small scaffolds that maintain these key contacts will serve as effective PGT inhibitors. To test this hypothesis, we have prepared, via heterologous expression of a subset of moenomycin biosynthetic genes, a novel moenomycin intermediate that maintains these six contacts but does not contain the putative minimal pharmacophore. This compound has comparable biological activity to the previously proposed minimal pharmacophore. The results reported here may facilitate the design of antibiotics targeted against peptidoglycan glycosyltransferases.
The prototypical type II fatty acid synthesis (FAS) pathway in bacteria utilizes two distinct classes of β-ketoacyl synthase (KAS) domains to assemble long-chain fatty acids, the KASIII domain for initiation and the KASI/II domain for elongation. The central role of FAS in bacterial viability and virulence has stimulated significant effort toward developing KAS inhibitors, particularly against the KASIII domain of the β-acetoacetyl-acyl carrier protein (ACP) synthase FabH. Herein, we show that the opportunistic pathogen Pseudomonas aeruginosa does not utilize a FabH ortholog but rather a new class of divergent KAS I/II enzymes to initiate the FAS pathway. When a P. aeruginosa cosmid library was used to rescue growth in a fabH downregulated strain of Escherichia coli , a single unannotated open reading frame, PA5174, complemented fabH depletion. While deletion of all four KASIII domain-encoding genes in the same P. aeruginosa strain resulted in a wild-type growth phenotype, deletion of PA5174 alone specifically attenuated growth due to a defect in de novo FAS. Siderophore secretion and quorum-sensing signaling, particularly in the rhl and Pseudomonas quinolone signal (PQS) systems, was significantly muted in the absence of PA5174. The defect could be repaired by intergeneric complementation with E. coli fabH . Characterization of recombinant PA5174 confirmed a preference for short-chain acyl coenzyme A (acyl-CoA) substrates, supporting the identification of PA5174 as the predominant enzyme catalyzing the condensation of acetyl coenzyme A with malonyl-ACP in P. aeruginosa . The identification of the functional role for PA5174 in FAS defines the new FabY class of β-ketoacyl synthase KASI/II domain condensation enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.