Genetic Network Programming (GNP) is an evolutionary algorithm derived from GA and GP. Directed graph structure, reusability of nodes, and implicit memory function enable GNP to deal with complex problems in dynamic environments efficiently and effectively, as many paper demonstrated. This paper proposed a new method to optimize GNP by extracting and using rules. The basic idea of GNP with Rule Accumulation (GNP with RA) is to extract rules with higher fitness values from the elite individuals and store them in the pool every generation. A rule is defined as a sequence of successive judgment results and a processing node, which represent the good experiences of the past behavior. As a result, the rule pool serves as an experience set of GNP obtained in the evolutionary process. By extracting the rules during the evolutionary period and then matching them with the situations of the environment, we could, for example, guide agents' behavior properly and get better performance of the agents. In this paper, we apply GNP with RA to the problem of determining agents' behaviors in the Tile-world environment in order to evaluate its effectiveness. The simulation results demonstrate that GNP with RA could have better performances than the conventional GNP both in the average fitness value and its stability.
Optimal route search to the destination is one of the most important functions of car navigation devices. The development of road traffic infrastructure has made it possible to receive real-time information of the traffic situation. Route search algorithms for car navigation devices make use of this information to avoid the traffic congestions. Such algorithms should find the new optimal route efficiently when the traffic situation changes. Usually, the minimum traveling time or distance is considered to define the optimal route. However, the minimum traveling time or distance is not always what the user is looking for. The user may prefer to travel on a certain route even at the cost of traveling time or distance. Car navigation devices should consider such preferences when finding the optimal route. In this paper, we propose a dynamic programming algorithm to find the optimal route considering that it should deal with the changes of the traffic situation and multiple criteria. The proposed method uses the information from the previous computation to find the new optimal route considering user preferences when the traveling time of the road section changes. The proposed method was applied to a real road network to find the optimal route. Results show that the proposed method can find the user-preferred optimal route. Simulation results also show better calculation time of the proposed method compared to the Dijkstra algorithm.
Object detection is crucial for individuals with visual impairment, especially when waiting for a bus. In this study, we propose a lightweight and highly accurate bus detection model based on an improved version of the YOLOv5 model. We propose integrating the GhostConv and C3Ghost Modules into the YOLOv5 network to reduce the number of parameters and floating-point operations per second (FLOPs), ensuring detection accuracy while reducing the model parameters. Following that, we added the SimSPPF module to replace the SPPF in the YOLOv5 backbone for increased computational efficiency and accurate object detection capabilities. Finally, we developed a Slim scale detection model by modifying the original YOLOv5 structure in order to make the model more efficient and faster, which is critical for real-time object detection applications. According to the experimental results, the Improved-YOLOv5 outperforms the original YOLOv5 in terms of the precision, recall, and mAP@0.5. Further analysis of the model complexity reveals that the Improved-YOLOv5 is more efficient due to fewer FLOPS, with fewer parameters, less memory usage, and faster inference time capabilities. The proposed model is smaller and more feasible to implement in resource-constrained mobile devices and a promising option for bus detection systems.
So far, many studies on Double-Deck Elevator Systems (DDES) have been done for exploring more efficient algorithms to improve the system transportation capacity, especially in a heavy traffic mode. The main idea of these algorithms is to decrease the number of stops during a round trip by grouping the passengers with the same destination as much as possible. Unlike what occurs in this mode, where all cages almost always keep moving, there is the case, where some cages become idle in a light traffic mode. Therefore, how to dispatch these idle cages, which is seldom considered in the heavy traffic mode, becomes important when developing the controller of DDES. In this paper, we propose a DDES controller with idle cage assignment algorithm embedded using Genetic Network Programming (GNP) for a light traffic mode, which is based on a timer and event-driven hybrid model. To verify the efficiency and effectiveness of the proposed method, some experiments have been done under a special down-peak pattern where passengers emerge especially at the 7th floor. Simulation results show that the proposed method improves the performance compared with the case when the cage assignment algorithm is not employed and works better than six other heuristic methods in a light traffic mode.
Global optimal routing for multiple Origin-Destinations (ODs) in traffic systems becomes extremely complicated when considering the traffic volumes on the road sections. This paper proposes a Combinational Algorithm which is combined by Conventional Method, U Algorithm, SU Algorithm, SRU Algorithm, SAU Algorithm and SRAU Algorithm to solve this problem. Among the above 6 algorithms, SRAU Algorithm contributes to the Combinational Algorithm the most, where firstly, all original ODs are sorted by their traffic volumes, and then the order is randomized to generate some routing candidates. For each candidate, before finding the optimal route of the current OD, the traveling times on the optimal routes calculated by ODs with high priority are adjusted and then Q Value-based dynamic programming is utilized to find the optimal route. Next, an updating process is needed to update the traveling time on the route using the current OD. Finally the best solution can be selected out of all solutions. Sufficient simulations show that the proposed routing algorithm is efficient enough to obtain the near optimal solution even in very large scale traffic systems. Also the consideration of the traffic volumes on the road sections enables our proposal to apply to real traffic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.