In follow-up studies, survival data often include subjects who have had a certain event at recruitment and may potentially experience a series of subsequent events during the follow-up period. This kind of survival data collected under a cross-sectional sampling criterion is called truncated serial event data. The outcome variables of interest in this paper are serial sojourn times between successive events. To analyze the sojourn times in truncated serial event data, we need to confront two potential sampling biases arising simultaneously from a sampling criterion and induced informative censoring. In this study, nonparametric estimation of the joint probability function of serial sojourn times is developed by using inverse probabilities of the truncation and censoring times as weight functions to accommodate these two sampling biases under various situations of truncation and censoring. Relevant statistical properties of the proposed estimators are also discussed. Simulation studies and two real data are presented to illustrate the proposed methods.
In longitudinal studies, an individual may potentially undergo a series of repeated recurrence events. The gap times, which are referred to as the times between successive recurrent events, are typically the outcome variables of interest. Various regression models have been developed in order to evaluate covariate effects on gap times based on recurrence event data. The proportional hazards model, additive hazards model, and the accelerated failure time model are all notable examples. Quantile regression is a useful alternative to the aforementioned models for survival analysis since it can provide great flexibility to assess covariate effects on the entire distribution of the gap time. In order to analyze recurrence gap time data, we must overcome the problem of the last gap time subjected to induced dependent censoring, when numbers of recurrent events exceed one time. In this paper, we adopt the Buckley-James-type estimation method in order to construct a weighted estimation equation for regression coefficients under the quantile model, and develop an iterative procedure to obtain the estimates. We use extensive simulation studies to evaluate the finite-sample performance of the proposed estimator. Finally, analysis of bladder cancer data is presented as an illustration of our proposed methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.