Following the Fukushima Dai-ichi Nuclear Power Plant accident, radiation effects on nonhuman biota in the contaminated areas have been a great concern. The induction of chromosomal aberrations in splenic lymphocytes of small Japanese field mice (Apodemus argenteus) and house mice (Mus musculus) inhabiting Fukushima Prefecture was investigated. In mice inhabiting the slightly contaminated area, the average frequency of dicentric chromosomes was similar to that seen in mice inhabiting a noncontaminated control area. In contrast, mice inhabiting the moderately and heavily contaminated areas showed a significant increase in the average frequencies of dicentric chromosomes. Total absorbed dose rate was estimated to be approximately 1 mGy d(-1) and 3 mGy d(-1) in the moderately and heavily contaminated areas, respectively. Chromosomal aberrations tended to roughly increase with dose rate. Although theoretically, the frequency of chromosomal aberrations was considered proportional to the absorbed dose, chromosomal aberrations in old mice (estimated median age 300 days) did not increase with radiation dose at the same rate as that observed in young mice (estimated median age 105 days).
Since the Fukushima Dai-ichi Nuclear Power Plant accident, radiation effects on nonhuman biota in the contaminated areas have been a major concern. Here, we analyzed the frequencies of chromosomal aberrations (translocations and dicentrics) in the splenic lymphocytes of large Japanese field mice (Apodemus speciosus) inhabiting Fukushima Prefecture. A. speciosus chromosomes 1, 2, and 5 were flow-sorted in order to develop A. speciosus chromosome-specific painting probes, and FISH (fluorescence in situ hybridization) was performed using these painting probes to detect the translocations and dicentrics. The average frequency of the translocations and dicentrics per cell in the heavily contaminated area was significantly higher than the frequencies in the case of the noncontaminated control area and the slightly and moderately contaminated areas, and this aberration frequency in individual mice tended to roughly increase with the estimated dose rates and accumulated doses. In all four sampling areas, the proportion of aberrations occurring in chromosome 2 was approximately >3 times higher than that in chromosomes 1 and 5, which suggests that A. speciosus chromosome 2 harbors a fragile site that is highly sensitive to chromosome breaks induced by cellular stress such as DNA replication. The elevated frequency of chromosomal aberrations in A. speciosus potentially resulting from the presence of a fragile site in chromosome 2 might make it challenging to observe the mild effect of chronic low-dose-rate irradiation on the induction of chromosomal aberrations in A. speciosus inhabiting the contaminated areas of Fukushima.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.