We have obtained some universal thermodynamic properties on glass transitions of molecular liquids. The heat capacity C(p) of glassy propene, which was vitrified by using a vapor-deposition technique, was measured with a newly developed adiabatic calorimeter. Propene has the lowest glass transition temperature (T(g)=56 K), the largest C(p) jump at T(g) (C(p)(lq)/C(p)(gl)~2.5), and the lowest residual entropy (S(res)~Rln2) compared with glass-forming molecules measured before. We have analyzed the present data with other hydrocarbon molecules vitrified by liquid quenching and obtained the following results: (1) The excess heat capacities are scaled well by using a Kauzmann temperature T(K), (2) The size of the cooperative rearrangement region (CRR) frozen at T(g) increases with decreasing the temperature difference between T(g) and T(K) (Kauzmann temperature), and (3) The simpler the molecule is, the larger the frozen CRR becomes. These are all supporting the validity of the Adam-Gibbs theory.
Abstract:We have developed an active matrix-addressed magneto-optical spatial light modulator driven by spin-transfer switching (spin-SLM) which has a 100 × 100 array pixel layout with a 2 µm pixel pitch. It has pixel-selection-transistors and logic circuits which convert serial data into parallel data to reduce input terminals. We have confirmed successful magnetization switching of each pixel by injecting a pulse current generated from the logic circuit, and its optical display capability by showing digital characters.
We examined the spatial resolution characteristics of surface-stabilized ferroelectric liquid crystals (SSFLCs) to produce an amplitude-type spatial light modulator with 1 μm pitch pixels for wide-field-of-view holographic displays. We compared the resolution of SSFLCs and parallel-aligned nematic liquid crystals (NLCs) using small-pitch stripe-shaped electrodes, and concluded that SSFLCs are superior. The enhanced resolution of SSFLCs is attributable to the symmetrical LC molecular alignment achieved by applying opposite-polarity direct-current voltages; NLCs are aligned using alternating-current voltages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.