In this study, we successfully developed three-dimensional scaffolds fabricated from the chitosan-based hyaluronic acid hybrid polymer fibers, which can control the porous structure. To determine the adequate pore size for enhancing the chondrogenesis of cultured cells, we compared the behaviors of rabbit chondrocytes in scaffolds comprising different pore sizes (100, 200, and 400 microm pore size). Regarding the cell proliferation, there was no significant difference among the three groups. On the other hand, glycosaminoglycan contents in the 400 microm group significantly increased during the culture period, compared with those in the other groups. The ratio of type II to type I collagen mRNA level was also significantly higher in the 400 microm group than in the other groups. These results indicate that our scaffold with 400 microm pore size significantly enhances the extracellular matrix synthesis by chondrocytes. Additionally, the current scaffolds showed high mechanical properties, compared with liquid and gel materials. The data derived from this study suggest great promise for the future of a novel fabricated material with relatively large pore size as a scaffold for cartilage regeneration. The biological and mechanical advantages presented here will make it possible to apply our scaffold to relatively wide cartilaginous lesions.
To clarify the feasibility of using novel chitosan-based hyaluronan hybrid polymer fibers as a scaffold in ligament tissue engineering, their mechanical properties and ability to promote cellular adhesion, proliferation, and extracellular matrix production were studied in vitro. Chitosan fibers and chitosan-based 0.05% and 0.1% hyaluronan hybrid fibers were developed by the wet spinning method. Hyaluronan coating significantly increased mechanical properties, compared to the chitosan fibers. Rabbit fibroblasts adhesion onto hybrid fibers was significantly greater than for the control and chitosan fibers. For analysis of cell proliferation and extracellular matrix production, a three-dimensional scaffold was created by simply piling up each fiber. At 1 day after cultivation, the DNA content in the hybrid scaffolds was higher than that in the chitosan scaffold. Scanning electron microscopy showed that the fibroblasts had produced collagen fibers after 14 days of culture. Immunostaining for type I collagen was clearly predominant in the hybrid scaffolds, and the mRNA level of type I collagen in the hybrid scaffolds were significantly greater than that in the chitosan scaffold. The present study revealed that hyaluronan hybridization with chitosan fibers enhanced fiber mechanical properties and in vitro biological effects on the cultured fibroblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.