Visual evidence of the rotation of an amide group has been obtained by transmission electron microscope (TEM) observation of aromatic amide molecules encapsulated in a carbon nanotube. The fullerene group used as a tag also acts as an anchor to fix the sample molecule in one position, which made possible the observation of the rotation of the amide and the pyrene groups.
Whereas a statistical average of molecular ensembles has been the conventional source of information on molecular structures, atomic resolution movies of single organic molecules obtained by single-molecule real-time transmission electron microscopy have recently emerged as a new tool to study the time evolution of the structures of individual molecules. The present work describes a proof-of-principle study of the determination of the conformation of each C-C bond in single perfluoroalkyl fullerene molecules encapsulated in a single-walled carbon nanotube (CNT) as well as those attached to the outer surface of a carbon nanohorn (CNH). Analysis of 82 individual molecules in CNTs under a 120 kV electron beam indicated that 6% of the CF2-CF2 bonds and about 20% of the CH2-CH2 bonds in the corresponding hydrocarbon analogue are in the gauche conformation. This comparison qualitatively matches the known conformational data based on time- and molecular-average as determined for ensembles. The transmission electron microscopy images also showed that the molecules entered the CNTs predominantly in one orientation. The molecules attached on a CNH surface moved more freely and exhibited more diverse conformation than those in a CNT, suggesting the potential applicability of this method for the determination of the dynamic shape of flexible molecules and of detailed conformations. We observed little sign of any decomposition of the specimen molecules, at least up to 10(7) e·nm(-2) (electrons/nm(2)) at 120 kV acceleration voltage. Decomposition of CNHs under irradiation with a 300 kV electron beam was suppressed by cooling to 77 K, suggesting that the decomposition is a chemical process. Several lines of evidence suggest that the graphitic substrate and the attached molecules are very cold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.