Extracellular signal-regulated kinase (ERK) signalling plays a central role in various biological processes, including cell migration, but it remains unknown what factors directly regulate the strength and duration of ERK activation. We found that, among the B56 family of protein phosphatase 2A (PP2A) regulatory subunits, B56γ1 suppressed EGF-induced cell migration on collagen, bound to phosphorylated-ERK, and dephosphorylated ERK, whereas B56α1 and B56β1 did not. B56γ1 was immunolocalized in nuclei. The IER3 protein was immediately highly expressed in response to costimulation of cells with EGF and collagen. Knockdown of IER3 inhibited cell migration and enhanced dephosphorylation of ERK. Analysis of the time course of PP2A-B56γ1 activity following the costimulation showed an immediate loss of phosphatase activity, followed by a rapid increase in activity, and this activity then remained at a stable level that was lower than the original level. Our results indicate that the strength and duration of the nuclear ERK activation signal that is initially induced by ERK kinase (MEK) are determined at least in part by modulation of the phosphatase activity of PP2A-B56γ1 through two independent pathways.
Abstract.To ascertain the implications of loss of imprinting (LOI) of the insulin-like growth factor II gene (IGF2) for carcinogenesis, the precise frequency of LOI in colorectal carcinoma was examined using a laser capture microdissection method, and compared to the matched normal colorectal mucosa. LOI was examined by PCR-restriction fragment length polymorphism in combination with direct sequencing. The status was assigned as imprinting when PCR-RFLP showed only one band or sequence with a single peak, otherwise cases were classified as LOI. LOI was found in 13 of 24 informative cases of carcinoma (54%), which was higher than the ratios reported previously. LOI was also found in the normal colorectal mucosae in 14 cases (58%). The LOIs in carcinomas and in the normal mucosae were closely correlated: 10 of 13 LOI-positive carcinomas showed LOI in the matched normal mucosae. These results suggest that LOI of IGF2 in colorectal carcinoma and LOI in the background mucosa play important roles in carcinogenesis.
The insulin-like growth factor 2 gene (IGF2) is an imprinting gene, which mediates cell growth and apoptosis. The loss of imprinting (LOI) of IGF2 has been associated with the development of cancer. In the present study, loss LOI of IGF2 in lung cancer was analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in combination with DNA sequencing of samples collected by laser capture microdissection. The status of each sample was assigned as imprinting when PCR-RFLP revealed only one band or sequence with a single peak; otherwise, the case was classified as LOI. LOI was identified in eight out of 13 adenocarcinoma cases (62%), but was not detected in any of the nine squamous cell carcinoma cases (0%). These results suggest that IGF2 LOI is involved in the molecular pathogenesis of lung adenocarcinoma, but not squamous cell carcinoma, and that LOI may be detected through increased IGF2 expression levels.
Extracellular signal-regulated kinase (ERK) signalling plays a central role in various biological processes, including cell migration, but it remains unknown what factors directly regulate the strength and duration of ERK activation. We found that, among the B56 family of protein phosphatase 2A (PP2A) regulatory subunits, B56c1 suppressed EGF-induced cell migration on collagen, bound to phosphorylated-ERK, and dephosphorylated ERK, whereas B56a1 and B56b1 did not. B56c1 was immunolocalized in nuclei. The IER3 protein was immediately highly expressed in response to costimulation of cells with EGF and collagen. Knockdown of IER3 inhibited cell migration and enhanced dephosphorylation of ERK. Analysis of the time course of PP2A-B56c1 activity following the costimulation showed an immediate loss of phosphatase activity, followed by a rapid increase in activity, and this activity then remained at a stable level that was lower than the original level. Our results indicate that the strength and duration of the nuclear ERK activation signal that is initially induced by ERK kinase (MEK) are determined at least in part by modulation of the phosphatase activity of PP2A-B56c1 through two independent pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.