In this paper, a novel mechatronic design philosophy is introduced to develop a compact modular rotary elastic joint for a humanoid manipulator. The designed elastic joint is mainly composed of a brushless direct current (DC) motor, harmonic reducer, customized torsional spring, and fail-safe brake. The customized spring considerably reduces the volume of the elastic joint and facilitates the construction of a humanoid manipulator which employs this joint. The large central hole along the joint axis brings convenience for cabling and the fail-safe brake can guarantee safety when the power is off. In order to reduce the computational burden on the central controller and simplify system maintenance, an expandable electrical system, which has a double-layer control structure, is introduced. Furthermore, a robust position controller for the elastic joint is proposed and interpreted in detail. Vibration of the elastic joint is suppressed by means of resonance ratio control (RRC). In this method, the ratio between the resonant and anti-resonant frequency can be arbitrarily designated according to the feedback of the nominal spring torsion. Instead of using an expensive torque sensor, the spring torque can be obtained by calculating the product of spring stiffness and deformation, due to the high linearity of the customized spring. In addition, to improve the system robustness, a motor-side disturbance observer (DOb) and an arm-side DOb are employed to estimate and compensate for external disturbances and system uncertainties, such as model variation, friction, and unknown external load. Validity of the DOb-based RRC is demonstrated in the simulation results. Experimental results show the performance of the modular elastic joint and the viability of the proposed controller further.
The safety of human-robot interaction is an essential requirement for designing collaborative robotics. Thus, this paper aims to design a novel variable stiffness actuator (VSA) that can provide safer physical human-robot interaction for collaborative robotics. VSA follows the idea of modular design, mainly including a variable stiffness module and a drive module. The variable stiffness module transmits the motion from the drive module in a roundabout manner, making the modularization of VSA possible. As the key component of the variable stiffness module, a stiffness adjustment mechanism with a symmetrical structure is applied to change the positions of a pair of pivots in two levers linearly and simultaneously, which can eliminate the additional bending moment caused by the asymmetric structure. The design of the double-deck grooves in the lever allows the pivot to move freely in the groove, avoiding the geometric constraint between the parts. Consequently, the VSA stiffness can change from zero to infinity as the pivot moves from one end of the groove to the other. To facilitate building a manipulator in the future, an expandable electrical system with a distributed structure is also proposed. Stiffness calibration and control experiments are performed to evaluate the physical performance of the designed VSA. Experiment results show that the VSA stiffness is close to the theoretical design stiffness. Furthermore, the VSA with a proportional-derivative feedback plus feedforward controller exhibits a fast response for stiffness regulation and a good performance for position tracking.
Purpose The purpose of this study is to develop a robotic hand–arm system for on-orbit servicing missions at the Tiangong-2 (TG-2) Space Laboratory. Design/methodology/approach The hand–arm system is mainly composed of a lightweight arm, a dexterous hand, an electrical cabinet, a global camera, a hand–eye camera and some human–machine interfaces. The 6-DOF lightweight arm and the 15-DOF dexterous hand adopt the modular design philosophy that greatly reduces the design cycle and cost. To reduce the computational burden on the central controller and simplify system maintenance, an electrical system which has a hierarchical structure is introduced. Findings The prototypical operating experiments completed in TG-2 space laboratory demonstrate the performance of the hand–arm system and lay foundations for the future applications of space manipulators. Originality/value The main contributions of this paper are as follows a robotic hand–arm system which can perform on-orbit servicing missions such as grasping the electric drill, screwing the bolt, unscrewing J599 electrical connector has been developed; a variable time step motion plan method is proposed to adjust the trajectories of the lightweight arm to reduce or eliminate the collision force; and a dexterous hand uses the coordinated grasp control based on the object Cartesian stiffness to realize stable grasp. To solve the kinematic mapping from the cyber glove commands to the dexterous hand, a fingertip-position-based method is proposed to acquire precise solutions.
Autonomous planning is a significant development direction of the space manipulator, and learning from demonstrations (LfD) is a potential strategy for complex tasks in the field. However, separating control from planning may cause large torque fluctuations and energy consumptions, even instability or danger in control of space manipulators, especially for the planning based on the human demonstrations. Therefore, we present an autonomous planning and control strategy for space manipulators based on LfD and focus on the dynamics uncertainty problem, a common problem of actual manipulators. The process can be divided into three stages: firstly, we reproduced the stochastic directed trajectory based on the Gaussian process-based LfD; secondly, we built the model of the stochastic dynamics of the actual manipulator with Gaussian process; thirdly, we designed an optimal controller based on the dynamics model to obtain the improved commanded torques and trajectory, and used the separation theorem to deal with stochastic characteristics during control. We evaluated the strategy with locating pre-screwed bolts experiment by Tiangong-2 manipulator system on the ground. The result showed that, compared with other strategies, the strategy proposed in this paper could significantly reduce torque fluctuations and energy consumptions, and its precision can meet the task requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.