Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease of life, usually caused by unhealthy diet and lifestyle. Compared to normal individuals, the structure of the intestinal flora of NAFLD patients is altered accordingly. This study investigates the effect of camel milk on the regulation of intestinal flora structure in mice with high-fat diet-induced NAFLD. NAFLD model was established by feeding C57BL/6J mice a high-fat diet for 12 weeks, meanwhile camel milk (3.0 g/kg/d), cow milk (3.0 g/kg/d), and silymarin (200 mg/kg/d) were administered by gavage, respectively. Food intake and changes of physiological indexes in mice were observed and recorded. The 16S rRNA gene V3-V4 region was sequenced and the intestinal flora diversity and gene function were predicted in the colon contents of mice from different group. The results showed that camel milk enhanced glucolipid metabolism by downregulate the levels of blood glucose and triglyceride (TG) in serum, reduced lipid accumulation by downregulate the level of TG in the liver and improved liver tissue structure in NAFLD mice (p < 0.05). Meanwhile, camel milk had a positive modulatory effect on the intestinal flora of NAFLD mice, increasing the relative abundance of beneficial bacteria and decreasing the relative abundance of harmful bacteria in the intestinal flora of NAFLD mice, and silymarin had a similar modulatory effect. At the genus level, camel milk increased the relative abundance of Bacteroides, norank_f_Muribaculaceae and Alloprevotella and decreased the relative abundance of Dubosiella and Coriobacteriaceae_UCG-002 (p < 0.05). Camel milk also enhanced Carbohydrate metabolism, Amino acid metabolism, Energy metabolism, Metabolism of cofactors and vitamins and Lipid metabolism in NAFLD mice, thus reducing the degree of hepatic lipid accumulation in NAFLD mice and maintaining the normal structure of the liver. In conclusion, camel milk can improve the structure and diversity of intestinal flora and enhance the levels of substance and energy metabolism in NAFLD mice, which has a positive effect on alleviating NAFLD and improving the structure of intestinal flora.
Camel milk (CM) is considered to protect the liver in the practice of traditional medicine in nomadic areas. The purpose of the present study was to investigate the effects of CM on the hepatic biochemical and multiple omics alterations induced by chronic alcoholic liver disease (ALD). An intragastric gavage mice Lieber DeCarli + Gao binge model (NIAAA model) was employed to investigate the inflammatory mechanism of camel milk on the liver tissue of mice. A gut microbiota of the feces of mice and transcriptomic and proteomic analyses of the liver of mice were performed. Analysis of serum and liver biochemical indexes revealed that camel milk not only prevents alcohol-induced colonic dysfunction and lipid accumulation, but also regulates oxidative stress and inflammatory cytokine production to protect against chronic ALD in mouse. The gut microbial community of mice treated with camel milk was more similar to the untreated control group than to the model group, indicating that the intake of camel milk pre- and post-alcohol gavage effectively prevents and alleviates the intestinal microbial disorder caused by chronic alcoholism in mice. Furthermore, the results of the transcriptomic and proteomic analyses of the liver tissue showed that camel milk can improve alcoholic liver injury in mice by regulating inflammatory factors and immune system disruptions. This study provides insights into the molecular mechanism by which camel milk can be developed as a potential functional food with no side effects and against liver injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.