Silkworm pupae are insects that are beneficial to human health, not only for their high nutritional value but, more importantly, for the variety of pharmacological functions they can perform when consumed. Currently, there is a lot of interest in the pharmaceutical applications of silkworm pupae. In recent years, the biological functions of domestic silkworm pupae have gradually been identified and confirmed, especially for their beneficial effects on human health. Studies have found that silkworm pupae have positive effects on liver protection, immune enhancement, antiapoptosis, antitumour, antibacterial, regulation of blood glucose and blood lipids, and lowering of blood pressure. However, the pharmacological mechanisms and systemic safety of silkworm pupae have not been systematically evaluated. In this paper, the nutritional composition of the pupae of the domestic silkworm is first summarised. The pharmacological functions of silkworm pupae and their components are then classified, and their mechanisms of occurrence are described. In addition, we provide a preliminary evaluation of the safety of silkworm pupae, analyse their application prospects, and suggest future directions for further pharmacological function studies. The aim is to generate interest in the promotion of human health through the use of silkworm pupae.
For thousands of years, edible insects have been used as food to alleviate hunger and improve malnutrition. Some insects have also been used as medicines because of their therapeutic properties. This is not only due to the high nutritional value of edible insects, but more importantly, the active substances from edible insects have a variety of biofunctional activities. In this paper, we described and summarized the nutritional composition of edible insects and discussed the biological functions of edible insects and their potential benefits for human health. A summary analysis of the findings for each active function confirms that edible insects have the potential to develop functional foods and medicines that are beneficial to humans. In addition, we analyzed the issues that need to be considered in the application of edible insects and the current status of edible insects in food and pharmaceutical applications. We concluded with a discussion of regulations related to edible insects and an outlook on future research and applications of edible insects. By analyzing the current state of research on edible insects, we aim to raise awareness of the use of edible insects to improve human health and thus promote their better use and development.
The yak is a special species that inhabits the Qinghai-Tibet Plateau and its surrounding areas. Its unique habitat gives yak milk certain distinct characteristics compared to regular cow milk. Yak milk not only has a high nutritional value but also holds potential benefits for human health. In recent years, there has been increasing research attention on yak milk. Studies have found that the bioactive components in yak milk have various functional properties, including antioxidant, anticancer, antibacterial, blood pressure-lowering, anti-fatigue, and constipation-relieving effects. However, more evidence is needed to confirm these functions in the human body. Therefore, by reviewing the current research status on the nutrition and functionality of yak milk, we aim to reveal its enormous potential as a source of nutritional and functional substances. This article primarily analyzed the nutritional composition of yak milk and the functional effects of its bioactive components, categorically elucidated the mechanisms behind its functional activities, and provided a brief introduction to related yak milk products. Our objective is to deepen people’s understanding of yak milk and provide some references for its further development and utilization.
Carbon dioxide (CO2) assisted oxidative dehydrogenation of propane over Ga-modified catalysts is highly sensitive to the identity of support, but the underlying cause of support effects has not been well established. In this article, SSZ-13, SSZ-39, ZSM-5, silica and γ-Al2O3 were used to load Ga species by incipient wet impregnation. The structure, textural properties, acidity of the Ga-based catalysts and the process of CO2-assisted oxidative dehydrogenation of propane were examined by X-ray diffraction (XRD), nitrogen physisorption (N2 physisorption), ammonia temperature-programmed desorption (NH3-TPD), pyridine chemisorbed Fourier transform infrared spectra (Py-FTIR), OH-FTIR and in situ FTIR. Evaluation of the catalytic performance combined with detailed catalyst characterization suggests that their dehydrogenation activity is positively associated with the number of acid sites in middle strength, confirming that the Lewis acid sites generated by Ga cations are the active species in the reaction. Ga/Na-SSZ-39(9) also has feasible acidic strength and a unique channel structure, which is conducive to the dissociative adsorption of propane and desorption of olefins. The Ga/Na-SSZ-39(9) catalysts showed superior olefins selectivity and catalytic stability at 600 ℃ compared to any other catalysts. This approach to quantifying support acid strength, and channel structure and applying it as a key catalytic descriptor of support effects is a useful tool to enable the rational design of next-generation CO2-assisted oxidative dehydrogenation catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.