The fractional advection-diffusion equation (fADE) model is a new approach to describe the vertical distribution of suspended sediment concentration in steady turbulent flow. However, the advantages and parameter definition of the fADE model in describing the sediment suspension distribution are still unclear. To address this knowledge gap, this study first reviews seven models, including the fADE model, for the vertical distribution of suspended sediment concentration in steady turbulent flow. The fADE model, among others, describes both Fickian and non-Fickian diffusive characteristics of suspended sediment, while the other six models assume that the vertical diffusion of suspended sediment follows Fick’s first law. Second, this study explores the sensitivity of the fractional index of the fADE model to the variation of particle sizes and sediment settling velocities, based on experimental data collected from the literatures. Finally, empirical formulas are developed to relate the fractional derivative order to particle size and sediment settling velocity. These formulas offer river engineers a substitutive way to estimate the fractional derivative order in the fADE model.
This paper makes an attempt to develop a Hausdorff fractal derivative model for describing the vertical distribution of suspended sediment in unsteady flow. The index of Hausdorff fractal derivative depends on the spatial location and the temporal moment in sediment transport. We also derive the approximate solution of the Hausdorff fractal derivative advection-dispersion equation model for the suspended sediment concentration distribution, to simulate the dynamics procedure of suspended concentration. Numerical simulation results verify that the Hausdorff fractal derivative model provides a good agreement with the experimental data, which implies that the Hausdorff fractal derivative model can serve as a candidate to describe the vertical distribution of suspended sediment concentration in unsteady flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.