MicroRNAs (miRNAs) are short non-coding RNA molecules, which posttranscriptionally regulate genes expression and play crucial roles in diverse biological processes, such as development, differentiation, apoptosis, and proliferation. Here, we investigated the possible role of miRNAs in the development of multidrug resistance (MDR) in human gastric and lung cancer cell lines. We found that miR-497 was downregulated in both multidrug-resistant human gastric cancer cell line SGC7901/vincristine (VCR) and multidrug-resistant human lung cancer cell line A549/cisplatin (CDDP) and the downregulation of miR-497 was concurrent with the upregulation of BCL2 protein, compared with the parental SGC7901 and A549 cell lines, respectively. In vitro drug sensitivity assay demonstrated that overexpression of miR-497 sensitized SGC7901/VCR and A549/CDDP cells to anticancer drugs, respectively. The luciferase activity of BCL2 3'-untranslated region-based reporter constructed in SGC7901/VCR and A549/CDDP cells suggested that BCL2 was the direct target gene of miR-497. Enforced miR-497 expression reduced BCL2 protein level and sensitized SGC7901/VCR and A549/CDDP cells to VCR-induced and CDDP-induced apoptosis, respectively. Taken together, our findings first suggested that has-miR-497 could play a role in both gastric and lung cancer cell lines at least in part by modulation of apoptosis via targeting BCL2.
Human herpesvirus 6 (HHV-6) is an important immunosuppressive and immunomodulatory virus that primarily infects immune cells and strongly suppresses the proliferation of infected cells. However, the mechanisms responsible for the regulation and suppression mediated by HHV-6 are still unknown. In this study, we examined the ability of HHV-6A to manipulate cell cycle progression in infected cells and explored the potential molecular mechanisms. We demonstrated that infection with HHV-6A imposed a growth-inhibitory effect on HSB-2 cells by inducing cell cycle arrest at the G 2 /M phase. We then showed that the activity of the Cdc2-cyclin B1 complex was significantly decreased in HHV-6A-infected HSB-2 cells. Furthermore, we found that inactivation of Cdc2-cyclin B1 in HHV-6A-infected cells occurred through the inhibitory Tyr15 phosphorylation resulting from elevated Wee1 expression and inactivated Cdc25C. The reduction of Cdc2-cyclin B1 activity in HHV-6-infected cells was also partly due to the increased expression of the cell cycleregulatory molecule p21 in a p53-dependent manner. In addition, HHV-6A infection activated the DNA damage checkpoint kinases Chk2 and Chk1. Our data suggest that HHV-6A infection induces G 2 /M arrest in infected T cells via various molecular regulatory mechanisms. These results further demonstrate the potential mechanisms involved in immune suppression and modulation mediated by HHV-6 infection, and they provide new insights relevant to the development of novel vaccines and immunotherapeutic approaches.
The etiology of glioma remains unclear so far. Human herpesvirus 6 (HHV-6) might be associated with glioma, but there is no direct evidence to support this. High percentages of HHV-6 DNA and protein were detected in tissue from gliomas, compared with normal brain tissue. In addition, a strain of HHV-6A was isolated from the fluid specimens from glioma cysts. High levels of interleukin 6 (IL-6), interleukin 8 (IL-8), tumor necrosis factor α, and transforming growth factor β (TGF-β) were detected in the cyst fluid specimens from HHV-6-positive patients with glioma. Furthermore, HHV-6A infection promoted IL-6, IL-8, and TGF-β production in astrocyte cultures. Our studies strongly suggest the involvement of HHV-6 infection in the pathogenesis of glioma.
Background Shigella, the causative agent of shigellosis, is a major global public health concern, particularly in developing countries with poor sanitation. A comprehensive and current understanding of the prevalent species and serotypes of shigellosis is essential for both disease prevention and vaccine development. However, no current data are available on the causative species/serotypes of shigellosis in mainland China during the past decade.Methods and FindingsRelevant studies addressing the prevalent species of shigellosis in mainland China from January 2001 to December 2010 were identified from PubMed and the Chinese BioMedical Literature Database (in Chinese) until April 2012. A total of 131 eligible articles (136 studies) were included in this review. Meta-analyses showed that the prevalences of S. flexneri and S. sonnei were 76.2% (95% CI, 73.7%–78.5%) and 21.3% (95% CI, 19.0%–23.7%), respectively. Stratified analyses indicated a decrease in the prevalence of S. flexneri cases and an increase in the prevalence of S. sonnei cases concurrent with the rapid economic growth experienced by China in recent years. Moreover, significantly higher rates of S. sonnei were observed in the East, North and Northeast regions of China, as compared to the rest of the country. These phenomena imply the possible association between the prevalent species of Shigella and regional economic status; however, additional factors also exist and require further investigations. Moreover, the two major serotypes S. flexneri 2a and 4c accounted for 21.5% (95% CI, 16.7%–27.4%) and 12.9% (95% CI 9.8%–16.9%) of S. flexneri infections, respectively, in the past decade. However, these results were found to be frequently heterogeneous (p for Q tests <0.01).ConclusionsThis study provides an updated review of the causative agents of shigellosis in mainland China and focuses on the importance of strengthening prevention and research efforts on S. sonnei and the newly emerged S. flexneri serotype 4c.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.