BackgroundRecently, more and more studies investigated the association of inflammation parameters such as the Platelet Lymphocyte Ratio (PLR) and the prognosis of various cancers. However, the prognostic role of PLR in cancer remains controversial.MethodsWe conducted a meta-analysis of published studies to evaluate the prognostic value of PLR in various cancers. In order to investigate the association between PLR and overall survival (OS), the hazard ratio (HR) and its 95% confidence interval (CI) were calculated.ResultsA total of 13964 patients from 26 studies were included in the analysis. The summary results showed that elevated PLR was a negative predictor for OS with HR of 1.60 (95%CI: 1.35–1.90; Pheterogeneity <0.001). Subgroup analysis revealed that increased PLR was a negative prognostic marker in patients with gastric cancer (HR = 1.35, 95%CI: 0.80–2.25, Pheterogeneity = 0.011), colorectal cancer (HR = 1.65, 95%CI: 1.33–2.05, Pheterogeneity = 0.995), hepatocellular carcinoma (HR = 3.07, 95% CI: 2.04–4.62, Pheterogeneity = 0.133), ovarian cancer (HR = 1.57, 95%CI: 1.07–2.31, Pheterogeneity = 0.641) and non-small cell lung cancer (NSCLC) (HR = 1.85, 95% CI: 1.42–2.41, Pheterogeneity = 0.451) except for pancreatic cancer (HR = 1.00, 95%CI: 0.92–1.09, Pheterogeneity = 0.388).ConclusionThe meta-analysis demonstrated that PLR could act as a significant biomarker in the prognosis of various cancers.
MicroRNAs (miRNAs) are short noncoding RNA molecules, which posttranscriptionally regulate genes expression and play crucial roles in diverse biological processes, such as development, differentiation, apoptosis and proliferation. Here, we investigated the possible role of miRNAs in the development of multidrug resistance (MDR) in human gastric and lung cancer cell lines. We found that miR-181b was downregulated in both multidrug-resistant human gastric cancer cell line SGC7901/ vincristine (VCR) and multidrug-resistant human lung cancer cell line A549/cisplatin (CDDP), and the downregulation of miR181b in SGC7901/VCR and A549/CDDP cells was concurrent with the upregulation of BCL2 protein, compared with the parental SGC7901 and A549 cell lines, respectively. In vitro drug sensitivity assay demonstrated that overexpression of miR-181b sensitized SGC7901/VCR and A549/CDDP cells to anticancer drugs, respectively. The luciferase activity of a BCL2 3 0 -untranslated region-based reporter construct in SGC7901/VCR and A549/CDDP cells suggests that a new target site in the 3 0 UTR of BCL2 of the mature miR-181s (miR-181a, miR-181b, miR-181c and miR-181d) was found. Enforced miR-181b expression reduced BCL2 protein level and sensitized SGC7901/VCR and A549/CDDP cells to VCR-induced and CDDP-induced apoptosis, respectively. Taken together, our findings suggest that miR-181b could play a role in the development of MDR in both gastric and lung cancer cell lines, at least in part, by modulation of apoptosis via targeting BCL2.
Plasma metabolomics are powerful for characterizing metabolic disturbances. Differences in small-molecule metabolites may reflect underlying CAD and serve as biomarkers for CAD progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.