The Chinese Glioma Cooperative Group (CGCG) Guideline Panel for adult diffuse gliomas provided recommendations for diagnostic and therapeutic procedures. The Panel covered all fields of expertise in neuro-oncology, i.e. neurosurgeons, neurologists, neuropathologists, neuroradiologists, radiation and medical oncologists and clinical trial experts. The task made clearer and more transparent choices about outcomes considered most relevant through searching the references considered most relevant and evaluating their value. The scientific evidence of papers collected from the literature was evaluated and graded based on the Oxford Centre for Evidence-based Medicine Levels of Evidence and recommendations were given accordingly. The recommendations will provide a framework and assurance for the strategy of diagnostic and therapeutic measures to reduce complications from unnecessary treatment and cost. The guideline should serve as an application for all professionals involved in the management of patients with adult diffuse glioma and also as a source of knowledge for insurance companies and other institutions involved in the cost regulation of cancer care in China.
MicroRNAs (miRNAs) are short noncoding RNA molecules, which posttranscriptionally regulate genes expression and play crucial roles in diverse biological processes, such as development, differentiation, apoptosis and proliferation. Here, we investigated the possible role of miRNAs in the development of multidrug resistance (MDR) in human gastric and lung cancer cell lines. We found that miR-181b was downregulated in both multidrug-resistant human gastric cancer cell line SGC7901/ vincristine (VCR) and multidrug-resistant human lung cancer cell line A549/cisplatin (CDDP), and the downregulation of miR181b in SGC7901/VCR and A549/CDDP cells was concurrent with the upregulation of BCL2 protein, compared with the parental SGC7901 and A549 cell lines, respectively. In vitro drug sensitivity assay demonstrated that overexpression of miR-181b sensitized SGC7901/VCR and A549/CDDP cells to anticancer drugs, respectively. The luciferase activity of a BCL2 3 0 -untranslated region-based reporter construct in SGC7901/VCR and A549/CDDP cells suggests that a new target site in the 3 0 UTR of BCL2 of the mature miR-181s (miR-181a, miR-181b, miR-181c and miR-181d) was found. Enforced miR-181b expression reduced BCL2 protein level and sensitized SGC7901/VCR and A549/CDDP cells to VCR-induced and CDDP-induced apoptosis, respectively. Taken together, our findings suggest that miR-181b could play a role in the development of MDR in both gastric and lung cancer cell lines, at least in part, by modulation of apoptosis via targeting BCL2.
Differently expressed microRNAs (miRNAs) in the plasma of lung adenocarcinoma (LA) patients might serve as biomarkers for LA detection. MiRNA expression profiling was performed using Exiqon panels followed by the verification (30 LA VS. 10 healthy controls (HCs)) with quantitative reverse transcription polymerase chain reaction (qRT-PCR) in the screening phase. Identified miRNAs were confirmed through training (42 LA VS. 32 HCs) and testing stages (66 LA VS. 62 HCs) by using qRT-PCR based absolute quantification methods. A total of six up-regulated plasma miRNAs (miR-19b-3p, miR-21-5p, miR-221-3p, miR-409-3p, miR-425-5p and miR-584-5p) were identified. The six-miRNA panel could discriminate LA patients from HCs with areas under the receiver operating characteristic curve of 0.72, 0.74 and 0.84 for the training, testing and the external validation stage (33 LA VS. 30 HCs), respectively. All the miRNAs identified except miR-584-5p were significantly up-regulated in LA tissues. MiR-19-3p, miR-21-5p, miR-409-3p and miR-425-5p showed high expression in arterial plasma with borderline significance. Additionally, miR-19-3p, miR-21-5p and miR-221-3p were significantly up-regulated in exosomes extracted from LA peripheral plasma samples. In conclusion, we identified a six-miRNA panel in peripheral plasma which might give assistance to the detection of LA at least for Asian population to a certain extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.