The cross-β amyloid form of peptides and proteins represents an archetypal and widely accessible structure consisting of ordered arrays of β-sheet filaments. These complex aggregates have remarkable chemical and physical properties, and the conversion of normally soluble functional forms of proteins into amyloid structures is linked to many debilitating human diseases, including several common forms of age-related dementia. Despite their importance, however, cross-β amyloid fibrils have proved to be recalcitrant to detailed structural analysis. By combining structural constraints from a series of experimental techniques spanning five orders of magnitude in length scale-including magic angle spinning nuclear magnetic resonance spectroscopy, X-ray fiber diffraction, cryoelectron microscopy, scanning transmission electron microscopy, and atomic force microscopy-we report the atomic-resolution (0.5 Å) structures of three amyloid polymorphs formed by an 11-residue peptide. These structures reveal the details of the packing interactions by which the constituent β-strands are assembled hierarchically into protofilaments, filaments, and mature fibrils.
It is well established that a wide variety of peptides or proteins without any evident sequence similarity can self-assemble into amyloid fibrils (1, 2). These structures have many common characteristics, typically being 100-200 Å in diameter and containing a universal "cross-β" core structure composed of arrays of β-sheets running parallel to the long axis of the fibrils (3). These fibrillar states are highly ordered, with persistence lengths of the order of microns (4) and mechanical properties comparable to those of steel and dragline silk, and much greater than those typical of biological filaments such as actin and microtubules (5). Amyloid fibrils can also possess very high kinetic and thermodynamic stabilities, often exceeding those of the functional folded states of proteins (6), as well as a greater resistance to degradation by chemical or biological means (7). Several functional forms of proteins that exploit these properties have been observed in biological systems (8). More generally, however, the conversion of normally soluble functional proteins into the amyloid state is associated with many debilitating human disorders, ranging from Alzheimer's disease to type II diabetes (1, 9). Our understanding of the nature of this type of filamentous aggregate has greatly improved in recent years (3,(10)(11)(12)(13)(14)(15)(16)(17)(18)(19), particularly through the structural determination of their elementary β-strand building blocks (20) and the characterization of their assembly into cross-β steric zippers (21,22). However, a thorough understanding of the hierarchical assembly of these individual structural elements into fully-formed fibrils, which display polymorphism but possess a range of generic features (23), has so far been limited by the absence of a complete atomicresolution cross-β amyloid structures (2).We report here the simultaneous determination of the a...