We present a quantum chemistry benchmark for noisy intermediate-scale quantum computers that leverages the variational quantum eigensolver, active space reduction, a reduced unitary coupled cluster ansatz, and reduced density purification as error mitigation. We demonstrate this benchmark on the 20 qubit IBM Tokyo and 16 qubit Rigetti Aspen processors via the simulation of alkali metal hydrides (NaH, KH, RbH),with accuracy of the computed ground state energy serving as the primary benchmark metric. We further parameterize this benchmark suite on the trial circuit type, the level of symmetry reduction, and error mitigation strategies. Our results demonstrate the characteristically high noise level present in near-term superconducting hardware, but provide a relevant baseline for future improvement of the underlying hardware, and a means for comparison across near-term hardware types. We also demonstrate how to reduce the noise in post processing with specific error mitigation techniques. Particularly, the adaptation of McWeeny purification of noisy density matrices dramatically improves accuracy of quantum computations, which, along with adjustable active space, significantly extends the range of accessible molecular systems. We demonstrate that for specific benchmark settings, the accuracy metric can reach chemical accuracy when computing over the cloud on certain quantum computers.
Energy and power consumption are becoming critical metrics in the design and usage of high performance systems. We have extended the Performance API (PAPI) analysis library to measure and report energy and power values. These values are reported using the existing PAPI API, allowing code previously instrumented for performance counters to also measure power and energy. Higher level tools that build on PAPI will automatically gain support for power and energy readings when used with the newest version of PAPI.We describe in detail the types of energy and power readings available through PAPI. We support external power meters, as well as values provided internally by recent CPUs and GPUs. Measurements are provided directly to the instrumented process, allowing immediate code analysis in real time. We provide examples showing results that can be obtained with our infrastructure.
Ideal hardware performance counters provide exact deterministic results. Real-world performance monitoring unit (PMU) implementations do not always live up to this ideal. Events that should be exact and deterministic (such as retired instructions) show run-to-run variation and overcount on x86 64 machines, even when run in strictly controlled environments. These effects are non-intuitive to casual users and cause difficulties when strict determinism is desirable, such as when implementing deterministic replay or deterministic threading libraries.We investigate eleven different x86 64 CPU implementations and discover the sources of divergence from expected count totals. Of all the counter events investigated, we find only a few that exhibit enough determinism to be used without adjustment in deterministic execution environments. We also briefly investigate ARM, IA64, POWER and SPARC systems and find that on these platforms the counter events have more determinism.We explore various methods of working around the limitations of the x86 64 events, but in many cases this is not possible and would require architectural redesign of the underlying PMU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.