Abstract. The present study aimed to detect the expression of metastasis associated lung adenocarcinoma transcript 1 (MALAT1) and microRNA (miR)-619-5p in colorectal carcinoma (CRC), and to evaluate the significance of MALAT1 and miR-619-5p expression in the clinical diagnosis and prognosis of CRC. Quantitative polymerase chain reaction was used to detect MALAT1 and miR-619-5p expression in 120 colorectal carcinoma and 120 adjacent normal tissue samples. The expression levels of MALAT1 and miR-619-5p were significantly different between colorectal carcinoma and adjacent normal tissues (P<0.05). MALAT1 exhibited an average 2.52-fold increase in colorectal adenoma when compared with adjacent normal tissues, while miR-619-5p exhibited an average 5.79-fold decrease in colorectal adenoma when compared with adjacent normal tissues. There was a significant difference between the MALAT1 expression in CRC tissues obtained from men and women (P=0.027), and in tumor-node-metastasis (TNM) stage II and stage III lesions (P=0.019). MALAT1 expression was associated with lymphovascular invasion (P=0.047) and perineural invasion (P=0.012). In addition, miR-619-5p expression was also significantly different between men and women (P=0.032), and between TNM stage II and stage III lesions (P=0.012). miR-619-5p expression was also associated with lymphovascular invasion (P=0.023) and perineural invasion (P=0.009). Patients with high expression of MALAT1 and low expression of miR-619-5p demonstrated significantly shorter disease-free survival (DFS) (P=0.002) and overall survival (OS) times (P=0.004) compared with patients with low MALAT1 expression and high miR-619-5p expression. Patients with perineural invasion demonstrated significantly shorter DFS (P=0.001) and OS times (P=0.003) compared with patients without perineural invasion. In addition, there was a negative correlation between MALAT1 expression and miR-619-5p expression (r=-0.415, P=0.004) in CRC tissues. In conclusion, MALAT1 and miR-619-5p have potential for the molecular diagnosis of CRC patients, and combined assaying of MALAT1 and miR-619-5p may improve the accuracy of the diagnosis of CRC and act as a good prognostic indicator in CRC patients.
The prognosis of glioma patients is generally poor, so it is urgent to find out the underlying molecular mechanisms. PFTK1 is a member of cyclin-dependent kinases (Cdks) family and has been reported to contribute to tumor migration and invasion. In this study, we aimed to explore the expression and function in human glioma. Western blot and immunohistochemistry were used to evaluate the expression of PFTK1. PFTK1 expression was higher in glioma tissues compared with normal brain tissues, and its level was associated with the WHO grade in Western blot analysis. The suppression of PFTK1 expression by RNA interference was shown to inhibit the migration of glioma cells. Knockdown of PFTK1 increases E-cadherin expression and decreases vimentin expression. These data show that PFTK1 may participate in the pathogenic process of glioma, suggesting that PFTK1 can become a potential therapeutic strategy for gastric cancer.
Proteasomes are major intracellular extralysosomal organelle for protein degradation and a central source of antigenic peptides in the endogenous pathway. Proteasome beta-4 subunit (PSMB4) was recently identified as potential cancer driver genes in several tumors. However, information regarding its regulation and possible function in the central nervous system is still limited. The present study was designed to elucidate dynamic changes in PSMB4 expression and distribution in the cerebral cortex in a lipopolysaccharide (LPS)-induced neuroinflammation rat model. It was found that PSMB4 expression was increased significantly in apoptotic neurons in the brain cortex after LPS injection. Moreover, there was a concomitant up-regulation of active caspase-3, cyclin D1, and CDK4 in vivo and vitro studies. In addition, these three proteins in cortical primary neurons were decreased after knocking down PSMB4 by siRNA. Collectively, these results suggested that PSMB4 may be involved in neuronal apoptosis in neuroinflammation after LPS injection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.