Ionic-liquid gating on a functional thin film with a low voltage has drawn a lot of attention due to rich chemical, electronic, and magnetic phenomena at the interface. Here, a key challenge in quantitative determination of voltage-controlled magnetic anisotropy (VCMA) in Au/[DEME] [TFSI] /Co field-effect transistor heterostructures is addressed. The magnetic anisotropy change as response to the gating voltage is precisely detected by in situ electron spin resonance measurements. A reversible change of magnetic anisotropy up to 219 Oe is achieved with a low gating voltage of 1.5 V at room temperature, corresponding to a record high VCMA coefficient of ≈146 Oe V . Two gating effects, the electrostatic doping and electrochemical reaction, are distinguished at various gating voltage regions, as confirmed by X-ray photoelectron spectroscopy and atomic force microscopy experiments. This work shows a unique ionic-liquid-gating system for strong interfacial magnetoelectric coupling with many practical advantages, paving the way toward ion-liquid-gating spintronic/electronic devices.
One of the central challenges in realizing multiferroics-based magnetoelectric memories is to switch perpendicular magnetic anisotropy (PMA) with a control voltage. In this study, we demonstrate electrical flipping of magnetization between the out-of-plane and the in-plane directions in (Co/Pt)/(011) Pb(MgNb)O-PbTiO multiferroic heterostructures through a voltage-controllable spin reorientation transition (SRT). The SRT onset temperature can be dramatically suppressed at least 200 K by applying an electric field, accompanied by a giant electric-field-induced effective magnetic anisotropy field (ΔH) up to 1100 Oe at 100 K. In comparison with conventional strain-mediated magnetoelastic coupling that provides a ΔH of only 110 Oe, that enormous effective field is mainly related to the interface effect of electric field modification of spin-orbit coupling from Co/Pt interfacial hybridization via strain. Moreover, electric field control of SRT is also achieved at room temperature, resulting in a ΔH of nearly 550 Oe. In addition, ferroelastically nonvolatile switching of PMA has been demonstrated in this system. E-field control of PMA and SRT in multiferroic heterostructures not only provides a platform to study strain effect and interfacial effect on magnetic anisotropy of the ultrathin ferromagnetic films but also enables the realization of power efficient PMA magnetoelectric and spintronic devices.
N-doped TiO2 with a three-dimensionally ordered macroporous structure was fabricated by a one-step colloidal crystal-template method, which showed excellent photocatalytic activity under visible-light irradiation.
To overcome the fundamental challenge of the weak natural response of antiferromagnetic materials under a magnetic field, voltage manipulation of antiferromagnetic interaction is developed to realize ultrafast, high-density, and power efficient antiferromagnetic spintronics. Here, we report a low voltage modulation of Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction via ionic liquid gating in synthetic antiferromagnetic multilayers of FeCoB/Ru/FeCoB and (Pt/Co)2/Ru/(Co/Pt)2. At room temperature, the distinct voltage control of transition between antiferromagnetic and ferromagnetic ordering is realized and up to 80% of perpendicular magnetic moments manage to switch with a small-applied voltage bias of 2.5 V. We related this ionic liquid gating-induced RKKY interaction modification to the disturbance of itinerant electrons inside synthetic antiferromagnetic heterostructure and the corresponding change of its Fermi level. Voltage tuning of RKKY interaction may enable the next generation of switchable spintronics between antiferromagnetic and ferromagnetic modes with both fundamental and practical perspectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.