Train timetabling is crucial for passenger railway operation. Demand-oriented train timetable optimization by minimizing travel time plays an important role in both theory and practice. Most of the current researches of demand-oriented timetable models assume an idealized situation in which the service order is fixed and in which zero overtaking exists between trains. In order to extend the literature, this paper discusses the combinatorial effect of service order and overtaking by developing four mixed-integer quadratic programming timetabling models with different service order as well as overtaking conditions. With the objective of minimizing passengers’ waiting time and in-vehicle time, the models take five aspects as constraints, namely dwell time, running time, safety interval, overtaking, and capacity. All four models are solved by ILOG CPLEX; and the results, which are based on Shanghai-Hangzhou intercity high-speed rail data, show that either allowing overtaking or changing service order can effectively optimize the quality of timetable with respect to reducing the total passengers’ travel time. Although optimizing train overtaking and service order simultaneously can optimize the timetable more significantly, compared to overtaking, allowing the change of service order can help passengers save total travel time without extending the train travel time. Moreover, considering the computation effort, satisfying both of the conditions in the meantime, when optimizing timetable has not got a good cost benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.