A metro disruption is a situation where metro service is suspended for some time due to unexpected events such as equipment failure and extreme weather. Metro disruptions reduce the level of service of metro systems and leave numerous passengers stranded at disrupted stations. As a means of disruption management, bus bridging has been widely used to evacuate stranded passengers. This paper focuses on the bus bridging problem under operational disruptions on a single metro line. Unlike previous studies, we consider dynamic passenger flows during the disruption. A multi-objective optimization model is established with objectives to minimize total waiting time, the number of stranded passengers and dispatched vehicles with constraints such as fleet size and vehicle capacity. The NSGA-II algorithm is used for the solution. Finally, we apply the proposed model to Shanghai Metro to access the effectiveness of our approaches in comparison with the current bridging strategy. Sensitivity analysis of the bus fleet size involved in the bus bridging problem was conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.