Heat dissipation in space applications is very much necessary. For example, a satellite works under an extreme temperature environment depending on the satellite’s position in the orbit. Apart from thermal energy from the sun, the electronic component in the satellite itself generates heat as well. To maintain the temperature of the components within their operational range, a grooved heat pipe (GHP) is one of the best solutions. Within GHP, capillary action plays a major role to transfer the liquid from the condenser side to the evaporator side under a near-zero gravitational environment.
This paper focuses on the numerical simulation of heat and mass transfer in GHP for space application. The Computational Fluid Dynamics (CFD) simulation is performed using Ansys Fluent software. The omega-shaped axial micro-channelled GHP made from aluminium is considered for this study. The working fluid in the heat pipe is ammonia. The volume-of-fluid (VOF) multiphase model along with the Lee model equation is used to perform the mass transfer prediction. The effects of different heat load for a 25% filling ratio (FR) are studied. This paper mainly focuses on the fluid flow development in the initial 40s of the GHP operation for a specified percentage of FR and heat load.
The CFD simulations give much more insights of the heat and mass transfer phenomena, which would not possible to obtain by experimentation. The results like pressure, velocity, temperature, and volume fraction profiles inside the GHP along the length were studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.