Limited by the structure, the high-efficiency vibration energy harvesting and vibration suppression have always been a theoretical bottleneck and technical challenge in this field. The nonlinear design of the new vibration structure is an indispensable link in the development of vibration energy harvesting and vibration suppression technologies. Nonlinear technologies not only have the potential to improve the efficiency of the energy harvesters by increasing the useful frequency bandwidth and output power but also have the potential to improve the efficiency of vibration suppressors by reducing the transmission rate and transfer energy. Nonlinear vibration energy harvesting and vibration suppression technologies have been salient topics in the literature and have attracted widespread attention from researchers. The present work provides a comprehensive review on the recent advances in nonlinear vibration energy harvesting and vibration suppression technologies. In particular, the latest developments in multifunctional hybrid technologies are proposed. Various key aspects to improve the performance of nonlinear vibration energy harvesting and vibration suppression systems are discussed, including implementations and configuration designs, nonlinear dynamics mechanisms, various optimizations, multifunctional hybrid, application prospects, and future outlooks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.