AimTo validate the Geant4 Application for Tomographic Emission (GATE) Monte Carlo simulation code by calculating the proton beam range in the therapeutic energy range.Materials and methodsIn this study, the GATE code which is based on Geant4 was used for simulation. The proton beams in the therapeutic energy range (5–250 MeV) were simulated in a water medium, and then compared with the data from National Institute of Standards and Technology (NIST) in order to investigate the accuracy of different physics list available in the GATE code. In addition, the optimal value of SetCut was assessed.ResultsIn all energy ranges, the QBBC physics had a greater deviation in the ranges relative to the NIST data. With respect to the range calculation accuracy, the QGSP_BIC_EMY and QGSP_BERT_HP_EMY physics were in the range of statistical uncertainty; however, QGSP_BIC_EMY produced better results using the least squares. Based on an investigation into the range calculation precision and simulation efficiency, the optimal SetCut was set at 0·1 mm.FindingsBased on an investigation into the range calculation precision and simulation yield, the QGSP_BIC_EMY physics and the optimal SetCut was recommended to be 0·1 mm.
Purpose:To examine detail depth dose characteristics of ideal proton beams using the GATE Monte Carlo technique.Methods:In this study, in order to improve simulation efficiency, we used pencil beam geometry instead of parallel broad-field geometry. Depth dose distributions for beam energies from 5 to 250 MeV in a water phantom were obtained. This study used parameters named Rpeak, R90, R80, R73, R50, full width at half maximum (FWHM), width of 80–20% distal fall-off (W(80–20)) and peak-to-entrance ratio to represent Bragg peak characteristics. The obtained energy–range relationships were fitted into third-order polynomial formulae. The present study also used the GATE Monte Carlo code to calculate the stopping power of proton pencil beams in a water cubic phantom and compared results with the National Institute of Standards and Technology (NIST) standard reference database.Results:The study results revealed deeper penetration, broader FWHM and distal fall-off and decreased peak-to-entrance dose ratio with increasing beam energy. Study results for monoenergetic proton beams showed that R73 can be a good indicator to characterise a range of incident beams. These also suggest FWHM is more sensitive than W(80–20) distal fall-off in finding initial energy spread. Furthermore, the difference between the obtained stopping power from simulation and NIST data almost in all energies was lower than 1%.Conclusion:Detail depth dose characteristics for monoenergetic proton beams within therapeutic energy ranges were reported. These results can serve as a good reference for clinical practitioners in their daily practice.
OBJECTIVE: This study aims to benchmark a Monte Carlo (MC) model of the 18 MV photon beam produced by the Siemens Oncor® linac using the BEAMnrc and DOSXYZnrc codes. METHODS: By matching the percentage depth doses and beam profiles calculated by MC simulations with measurements, the initial electron beam parameters including electron energy, full width at half maximum (spatial FWHM), and mean angular spread were derived for the 10×10 cm2 and 20×20 cm2 field sizes. The MC model of the 18 MV photon beam was then validated against the measurements for different field sizes (5×5, 30×30 and 40×40 cm2) by gamma index analysis. RESULTS: The optimum values for electron energy, spatial FWHM and mean angular spread were 14.2 MeV, 0.08 cm and 0.8 degree, respectively. The MC simulations yielded the comparable measurement results of these optimum parameters. The gamma passing rates (with acceptance criteria of 1% /1 mm) for percentage depth doses were found to be 100% for all field sizes. For cross-line profiles, the gamma passing rates were 100%, 97%, 95%, 96% and 95% for 5×5, 10×10, 20×20, 30×30 and 40×40 cm2 field sizes, respectively. CONCLUSIONS: By validation of the MC model of Siemens Oncor® linac using various field sizes, it was found that both dose profiles of small and large field sizes were very sensitive to the changes in spatial FWHM and mean angular spread of the primary electron beam from the bending magnet. Hence, it is recommended that both small and large field sizes of the 18 MV photon beams should be considered in the Monte Carlo linac modeling.
Background and objectivesThere is significant interest and potential in the treatment of neuroendocrine tumors via peptide receptor radionuclide therapy (PRRT) using one or both of 90 Y and 177 Lu-labeled peptides. Given the presence of different tumor sizes in patients and differing radionuclide dose delivery properties, the present study aims to use Monte Carlo simulations to estimate S-values to spherical tumors of various sizes with 90 Y and 177 Lu separately and in combination. The goal is to determine ratios of 90 Y to 177 Lu that result in the largest absorbed doses per decay of the radionuclides and the most suitable dose profiles to treat tumors of specific sizes. Material and methodsParticle transfer calculations and simulations were performed using the Monte Carlo GATE simulation software. Spherical tumors of different sizes, ranging from 0.5 to 20 mm in radius, were designed. Activities of 177 Lu and 90 Y, individually and in combination, were homogeneously placed within the total volume of the tumors. We determined the S-values to the tumors, and to the external volume outside of the tumors (cross-dose) which was used to approximate background tissue. The dose profiles were obtained for each of the different tumor sizes, and the uniformity of dose within each tumor was calculated.Results For all tumor sizes, the self-dose and crossdose per decay from 90 Y were higher than that from 177 Lu. We observed that 177 Lu had the most uniform dose distribution within tumors with radii less than 5 mm. For tumors greater than 5 mm in radius, a ratio of 25% 90 Y to 75% 177 Lu resulted in the most uniform doses. When the ratio of 177 Lu to 90 Y was smaller, the uniformity improved more with increasing tumor size. The cross-dose stayed approximately constant for tumors larger than 15 mm for all ratios of 177 Lu to 90 Y. Finally, as the size of the tumor increased, differences in the S-values between different ratios of 177 Lu to 90 Y decreased. ConclusionOur work showed that to achieve a more uniform dose distribution within the tumor, 177 Lu alone is more effective for small tumors. For medium and large tumors, a ratio of 90 Y to 177 Lu with more or less 177 Lu, respectively, is recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.