In this paper, the effect of integration of natural fibers in UD carbon fiber is studied. The integration of natural fibers in carbon fiber is made via intra fiber hybridization. Natural fiber hybrid composite samples were prepared for Mode I and Mode II fracture tests. XRD analysis was done for the chosen natural fibres to know the crystallinity index and then compared with Carbon and Glass fibres. The fracture test experimental results, revealed that the effect of Jute fiber integration in UD Carbon epoxy composite was found significant in getting relatively good Mode I and II fracture toughness at the crack initiation without losing its stiffness. In addition to this Kenaf Carbon epoxy composite indicated better crack suppression with 30% higher propagation toughness values as compared other hybrid combinations and pristine composites. It is observed that integration of jute fibers in UD carbon epoxy composites was significant in achieving good mode I and mode II fracture toughness at the crack initiation without losing its stiffness and also kenaf carbon epoxy composites indicated better crack suppression with 30% higher propagation toughness as compared to other hybrid combinations used.
In recent times, the use of aluminum alloy-based Hybrid Metal Matrix Composites (HMMCs) is being increased in aerospace and automotive applications. HMMCs compensate for the low desirable properties of each filler used. However, the mechanical properties of HMMCs are not well understood. In particular, microstructural investigations and wear optimization studies of HMMCs are not clear. Therefore, further studies are required. The present study is aimed at fabricating and mechanical and wear characterizing and microstructure investigating of Silicon Carbide (SiC) and Graphite (Gr) added in Aluminum (Al) alloy Al6061 HMMCs. The addition of SiC particles was in the range from 0 to 9 weight percentage (wt.%) in steps of 3, along with the addition of 1 wt.% Gr in powder form. The presence of alloying elements in the Al6061 alloy was identified using the Energy Dispersive X-Ray Analysis (EDX). The dispersion of SiC and Gr particles in the alloy was investigated using metallurgical microscope and Scanning Electron Microscopy (SEM). The gain in strength can be attributed to the growth in dislocation density. The nature of fracture was quasi-cleavage. The microstructure examination reveals the uniform dispersion of the reinforcement. Density, hardness, and Ultimate Tensile Strength values observed to be increased with increased contents of SiC reinforcement. Besides, wear studies were performed in dry sliding conditions. Optimization studies were performed to investigate the effect of parameters that affecting the wear. The sliding wear resistance was noticed to be improved concerning higher amounts of reinforcement leading to a decrease in delamination and adhesive wear. The predicted values for the wear rate have also been compared with the experimental results and good correlation is obtained.
Fiber-reinforced polymer (FRP) is the most promising technique in the present era to bring sustainability, reliability, and pseudo ductility to concrete structures due to its superior properties. Thermoplastic and thermoset polymers are the most thrown-out synthetic waste that contributes to environmental pollution for a long time. Knowing this issue an attempt was made to use High-Density Polyethylene Fiber (HDPE) fillers of size 40x2 mm has been used in concrete. This investigation aims to estimate the integrity effect of HDPE fillers incorporation and wrapping of concrete with Basalt fiber mats (BFM) and Geo-textile fiber mats (GFM) on split tensile strength, shear strength, and impact resistance as per standards. Results indicate that the addition of an optimum quantity of HDPE has a significant effect on improving the tensile, shear, and impact strengths. Adding HDPE fillers in the range of 0.5 - 1.5% in concrete samples wrapped with Basalt and Geo-textile fiber mats showed an increased tensile strength of up to 14.06% and 7.40% respectively with that conventional concrete. Further, wrapping of concrete using Basalt fiber and geotextile fiber mats showed a 4.16% and 20% increase in shear strength for 0.5% HDPE-incorporated concrete samples. Higher impact resistance was also observed for HDPE-added and fiber-wrapped concrete samples.
Advanced polymer matrix composites are gaining the market in their way due to their exceptional specific stiffness, specific strength, fatigue, and corrosion resistance in the field of Auto-Tech, Aero-Tech, Biotech, etc. However, the lack of ductility and catastrophic failure has limited their application in these areas. Hence there is a need to explore means and protocols for designing the reduced factor of safety with high-performance toughened composites. To address this problem, a new generation of high-performance composites with pseudo-ductile or ductile behavior is needed. The ongoing High-Performance Ductile Composite Technology (HiPerDuCT) program jointly between the University of Bristol U.K and Imperial College London to address this challenge by developing newer materials. The fiber architectures made under this project gave a more gradual failure rather than catastrophic failure which improves the mechanical properties. This paper mainly focuses on addressing this evolution of pseudo ductility in fiber-reinforced composites. In addition to this, an attempt has been made to newer possible fiber positions in matrix materials for inducing reasonable ductility in composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.