Introduction:
Heart failure with preserved ejection fraction (HFpEF) is an increasingly common clinical syndrome with diagnostic challenges and no effective treatment. The high heterogeneity of HFpEF clinical syndrome demands novel technologies to distinguish from heart failure with reduced ejection Fraction (HFrEF). Currently, invasive hemodynamic exercise testing is performed to evaluate for HFpEF with right heart catheterization.
Hypothesis:
We hypothesize that a deep learning model can noninvasively detect patients with HFpEF using phonocardiogram (PCG).
Methods:
Eligible patients undergoing right heart catheterization were recruited after IRB approval. Eko duo stethoscope was used to record simultaneous ECG & PCG at the mitral area on the patients prior to right heart catheterization at baseline. Each recording was 30 seconds in length with a frequency range between 250 - 5000 Hz. R-wave peak detection was performed & beat to beat PCG annotations were performed. The annotated PCG signals were converted into Mel-frequency cepstral coefficients (MFCC) and padded to account for the difference in lengths. Deep Learning model was developed using a Sequential Neural Network with 80% data to train and validate the model and 20% hold out data was used for testing accuracy of the model. Receiver operating curve (ROC) was obtained to estimate area under the curve (AUC) for performance analysis.
Results:
42 patients were enrolled with 25 patients diagnosed as HFpEF by right heart catheterization and 17 were reported as controls. 2544 & 1771 individual PCG annotations for HFpEF and controls were used for model training/validation and testing. The model performed reasonably well with accuracy of 0.89, F1 score of 0.88, precision of 0.80 and recall of 0.97 on the test data. ROC was obtained with AUC of 0.94.
Conclusions:
The results demonstrate the ability of the deep learning model to noninvasively detect HFpEF using PCG. Larger study is needed to validate these findings.
Chronic cough is not only one of the leading causes of seeking healthcare all over the world but also a huge emotional drain on the affected patient population. In this study, we used 24-hour cough recordings to analyze the intervening conversations for sentiment analyses to better diagnose, guide, and manage treatment in such patients. We surveyed a cough clinic and selected four subjects with active cough complaints using relevant ICD-10 codes. Subjects were given and instructed to wear a device to record cough for 24 hours and the recordings were collected at weeks 0, 4, 8, and 12 of the treatment. The collected data was preprocessed to eliminate sections with no data (sleep, silence) and the number of coughs was counted. Google search API calls were used to transcribe the audio files and NLTK’s VADER analyzer was used to classify sentiments on a scale of 0 to 1. Finally, average scores were calculated and plotted over a graph to interpret any trends. 12 weeks of cough treatment had varied results on the four subjects. We categorized the exhibited sentiments into negative, neutral, positive, and compound and noted that they also showed no general trends. Among these, the compound sentiment displayed the most erratic patterns, and the obtained results could not generate a steady trend. Further studies are required with a large cohort to collect data over a longer duration to accurately analyze the sentiments associated with chronic cough.
Majority of hospitals still utilize manual methods for patient scheduling and predicting future appointments, resulting in longer wait times, hospital burnout and inadequate use of resources. A variety of avenues have been explored, including priority patient routing, tele-health, neural networks for improving ER efficiency, predicting no-shows, consultation duration variations, and optimizing operating room utilization. Addressing this issue, a study was conducted using 700 pre-visit notes of pancreatic patients to determine the requirement of endoscopic or biliary procedure. Through natural language processing and traditional or transfer learning algorithms, data could directly be sent to EPIC for nurses to assess in further decision making. Performance of the models was above average with the transfer learning method outperforming the traditional method. Although limited by less dataset and fewer circumstances to test the models on, the results exposed potential for future development with the possibility of patients reporting their chief concerns, in turn analyzed by algorithms, ultimately creating a smooth and effective patient itinerary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.