Indole and indazole synthetic cannabinoids (SCs) featuring l-valinate or l-tert-leucinate pendant group have recently emerged as prevalent recreational drugs, and their use has been associated with serious adverse health effects. Due to the limited pharmacological data available for these compounds, 5F-AMBICA, 5F-AMB, 5F-ADB, AMB-FUBINACA, MDMB-FUBINACA, MDMB-CHMICA, and their analogues were synthesized and assessed for cannabimimetic activity in vitro and in vivo. All SCs acted as potent, highly efficacious agonists at CB1 (EC50 = 0.45-36 nM) and CB2 (EC50 = 4.6-128 nM) receptors in a fluorometric assay of membrane potential, with a general preference for CB1 activation. The cannabimimetic properties of two prevalent compounds with confirmed toxicity in humans, 5F-AMB and MDMB-FUBINACA, were demonstrated in vivo using biotelemetry in rats. Bradycardia and hypothermia were induced by 5F-AMB and MDMB-FUBINACA doses of 0.1-1 mg/kg (and 3 mg/kg for 5F-AMB), with MDMB-FUBINACA showing the most dramatic hypothermic response recorded in our laboratory for any SC (>3 °C at 0.3 mg/kg). Reversal of hypothermia by pretreatment with a CB1, but not CB2, antagonist was demonstrated for 5F-AMB and MDMB-FUBINACA, consistent with CB1-mediated effects in vivo. The in vitro and in vivo data indicate that these SCs act as highly efficacious CB receptor agonists with greater potency than Δ(9)-THC and earlier generations of SCs.
Introduction: Compounds present in Cannabis sativa such as phytocannabinoids and terpenoids may act in concert to elicit therapeutic effects. Cannabinoids such as Δ9-tetrahydrocannabinol (Δ9-THC) directly activate cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2); however, it is not known if terpenoids present in Cannabis also affect cannabinoid receptor signaling. Therefore, we examined six common terpenoids alone, and in combination with cannabinoid receptor agonists, on CB1 and CB2 signaling in vitro.Materials and Methods: Potassium channel activity in AtT20 FlpIn cells transfected with human CB1 or CB2 receptors was measured in real time using FLIPR® membrane potential dye in a FlexStation 3 plate reader. Terpenoids were tested individually and in combination for periods up to 30 min. Endogenous somatostatin receptors served as a control for direct effects of drugs on potassium channels.Results: α-Pinene, β-pinene, β-caryophyllene, linalool, limonene, and β-myrcene (up to 30–100 μM) did not change membrane potential in AtT20 cells expressing CB1 or CB2, or affect the response to a maximally effective concentration of the synthetic cannabinoid CP55,940. The presence of individual or a combination of terpenoids did not affect the hyperpolarization produced by Δ9-THC (10 μM): (CB1: control, 59%±7%; with terpenoids (10 μM each) 55%±4%; CB2: Δ9-THC 16%±5%, with terpenoids (10 μM each) 17%±4%). To investigate possible effect on desensitization of CB1 responses, all six terpenoids were added together with Δ9-THC and signaling measured continuously over 30 min. Terpenoids did not affect desensitization, after 30 min the control hyperpolarization recovered by 63%±6% in the presence of the terpenoids recovery was 61%±5%.Discussion: None of the six of the most common terpenoids in Cannabis directly activated CB1 or CB2, or modulated the signaling of the phytocannabinoid agonist Δ9-THC. These results suggest that if a phytocannabinoid–terpenoid entourage effect exists, it is not at the CB1 or CB2 receptor level. It remains possible that terpenoids activate CB1 and CB2 signaling pathways that do not involve potassium channels; however, it seems more likely that they may act at different molecular target(s) in the neuronal circuits important for the behavioral effect of Cannabis.
Background and Purpose: The morbidity and mortality associated with recreational use of synthetic cannabinoid receptor agonists (SCRAs) may reflect strong activation of CB 1 receptors and is a major health concern. The properties of SCRA at CB 1 receptors are not well defined. Here we have developed an assay to determine acute CB 1 receptor efficacy using receptor depletion with the irreversible CB 1 receptor antagonist AM6544, with application of the Black and Leff operational model to calculate efficacy.Experimental Approach: Receptor depletion in mouse AtT-20 pituitary adenoma cells stably expressing human CB 1 receptors was achieved by pretreatment of cells with AM6544 (10 μM, 60 min). The CB 1 receptor-mediated hyperpolarisation of AtT-20 cells was measured using fluorescence-based membrane potential dye. From data fit to the operational model, the efficacy (τ) and affinity (K A ) parameters were obtained for each drug.Key Results: AM6544 did not affect the potency or maximal effect of native somatostatin receptor-induced hyperpolarization. The τ value of Δ 9 -THC was 80-fold less than the reference CB receptor agonist CP55940 and 260-fold less than the highest efficacy SCRA, 5F-MDMB-PICA. The operational efficacy of SCRAs ranged from 233 (5F-MDMB-PICA) to 28 (AB-PINACA), with CP55940 in the middle of the efficacy rank order. There was no correlation between the τ and K A values.Conclusions and Implications: All SCRAs tested showed substantially higher efficacy at CB 1 receptors than Δ 9 -THC, which may contribute to the adverse effects seen with these drugs but not Δ 9 -THC.
IntroductionCompounds present in Cannabis sativa such as phytocannabinoids and terpenoids, may act in concert to elicit therapeutic effects. Cannabinoids such as Δ9-tetrahydrocannabinol (Δ9-THC) directly activate cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), however, it is not known if terpenoids present in Cannabis also affect cannabinoid receptor signalling. Therefore, we examined 6 common terpenoids alone, and in combination with cannabinoid receptor agonists, on CB1 and CB2 signalling in vitro.Materials and MethodsPotassium channel activity in AtT20 FlpIn cells transfected with human CB1 or CB2 receptors was measured in real-time using FLIPR® membrane potential dye in a FlexStation 3 plate reader. Terpenoids were tested individually and in combination for periods up to 30 minutes. Endogenous somatostatin receptors served as a control for direct effects of drugs on potassium channels.Resultsα-Pinene, β-pinene, β-caryophyllene, linalool, limonene and β-myrcene (up to 30-100 µM) did not change membrane potential in AtT20 cells expressing CB1 or CB2, or affect the response to a maximally effective concentration of the synthetic cannabinoid CP55,940. The presence of individual or a combination of terpenoids did not affect the hyperpolarization produced by Δ9-THC (10µM): (CB1: control, 59±7%; with terpenoids (10 µM each) 55±4%; CB2: Δ9-THC 16±5%, with terpenoids (10 µM each) 17±4%). To investigate possible effect on desensitization of CB1 responses, all six terpenoids were added together with Δ9-THC and signalling measured continuously over 30 min. Terpenoids did not affect desensitization, after 30 minutes the control hyperpolarization recovered by 63±6%, in the presence of the terpenoids recovery was 61±5%.DiscussionNone of the six of the most common terpenoids in Cannabis directly activated CB1 or CB2, or modulated the signalling of the phytocannabinoid agonist Δ9-THC. These results suggest that if a phytocannabinoid-terpenoid entourage effect exists, it is not at the CB1 or CB2 receptor level. It remains possible that terpenoids activate CB1 and CB2 signalling pathways that do not involve potassium channels, however, it seems more likely that they may act at different molecular target(s) in the neuronal circuits important for the behavioural effect of Cannabis.
BACKGROUND AND PURPOSEThe morbidity and mortality associated with recreational use of synthetic cannabinoid receptor agonists (SCRAs) is a major health concern, and may involve over-activation of CB1 receptors.Thus, we sought to determine the efficacy of 13 SCRAs at CB1 using receptor depletion with the irreversible CB1 antagonist AM6544 followed by fitting the curve with the Black and Leff operational model to calculate efficacy. EXPERIMENTAL APPROACHReceptor depletion in mouse AtT-20 neuroblastoma cells stably expressing human CB1 was achieved by pre-treatment of cells with AM6544 (10 µM, 60 mins). The CB1-mediated hyperpolarisation of AtT20 cells was measured using membrane potential dye. From data fit to the operational model, the efficacy (tau) and affinity (KA) parameters were obtained for each drug. KEY RESULTSAM6544 did not affect the potency or maximal effect of native somatostatin receptor-induced hyperpolarisation (Control, pEC50 9.13 ± 0.05, Emax 38 ± 1%; AM6544 treated pEC50 9.18 ± 0.04, Emax 39 ± 0.7%). The tau value of ∆ 9 -THC was 70-fold less than the reference CB-agonist CP55940, and 240-fold less than the highest efficacy SCRA, 5F-MDMB-PICA. Most of the SCRAs had about 50% of the efficacy of CP55940. There was no correlation between the tau and KA values for any SCRA. CONCLUSION AND IMPLICATIONSAll the SCRA tested showed substantially higher agonist activity at CB1 than ∆ 9 -THC, which may contribute to the adverse effects seen with these drugs but not ∆ 9 -THC, although the mechanisms underlying SCRA toxicity are still poorly defined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.