The causative agent of novel coronavirus disease (COVID-19) is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 possesses RNA as a genetic material with 79% of the match with the bat SARS-CoV genome, which became epidemic in 2002. The SARS-CoV-2 peripheral Spike-Fc protein binds specifically to the ACE2 receptors present on bronchial epithelial cells and alveolar pneumocytes to downmodulates its expression which leads to severe acute respiratory failure. The disease is super infectious from human to human and the symptoms are similar to flu. The old aged and immunocompromised population are severely affected, and healthcare providers globally applied various strategies for treatment including the repurposing of drugs including antimalarial drug, hydroxychloroquine and anti-viral drugs. Herein, we described the SARS-CoV-2 pandemic, immune responses, possible drug targets, vaccines under the trials and correlated the possibility of trained immunity induced by BCG vaccination over control of SARS-CoV-2 infection. The countries with constraint BCG vaccination policy are struggling badly compared to countries with BCG vaccination policy. The BCG vaccination policy supports either lowering the total number of COVID-19 cases or the increasing recovery rate.
Summary
Macrophages contribute to host immunity and tissue homeostasis via alternative activation programs. M1-like macrophages control intracellular bacterial pathogens and tumor progression. In contrast, M2-like macrophages shape reparative microenvironments that can be conducive for pathogen survival or tumor growth. An imbalance of these macrophages phenotypes may perpetuate sites of chronic unresolved inflammation, such as infectious granulomas and solid tumors. We have found that plant-derived and synthetic rocaglates sensitize macrophages to low concentrations of the M1-inducing cytokine IFN-gamma and inhibit their responsiveness to IL-4, a prototypical activator of the M2-like phenotype. Treatment of primary macrophages with rocaglates enhanced phagosome-lysosome fusion and control of intracellular mycobacteria. Thus, rocaglates represent a novel class of immunomodulators that can direct macrophage polarization toward the M1-like phenotype in complex microenvironments associated with hypofunction of type 1 and/or hyperactivation of type 2 immunity, e.g., chronic bacterial infections, allergies, and, possibly, certain tumors.
The remarkable ability of () to survive inside human macrophages is attributed to the presence of a complex sensory and regulatory network. PrrA is a DNA-binding regulatory protein, belonging to an essential two-component system (TCS), PrrA/B, which is required for early phase intracellular replication of Despite its importance, the mechanism of PrrA/B-mediated signaling is not well understood. In the present study, we demonstrate that the binding of PrrA on the promoter DNA and its consequent activation is cumulatively controlled via dual phosphorylation of the protein. We have further characterized the role of terminal phospho-acceptor domain in the physical interaction of PrrA with its cognate kinase PrrB. The genetic deletion of in was possible only in the presence of ectopic copies of the genes, suggesting the essentiality of this TCS in fast-growing mycobacterial strains as well. The overexpression of phospho-mimetic mutant (T6D) altered the growth of in an culture and affected the replication of BCG in mouse peritoneal macrophages. Interestingly, the Thr site was found to be conserved in complex, whereas it was altered in some fast-growing mycobacterial strains, indicating that this unique phosphorylation might be predominant in employing the regulatory circuit in BCG and presumably also in complex.
Tuberculosis remains a critical infectious disease world-wide. The development of novel therapeutic strategies requires greater understanding of host factors that contribute to disease susceptibility. A major unknown in TB pathogenesis is the mechanism of necrosis in TB granulomas that leads to the massive lung tissue damage and cavity formation necessary for the pathogen transmission. In humans, TB progression has been linked to hyperactivity of type I IFN (IFN-I) pathway, the primary cause of which remains elusive.We studied the mechanistic drivers of pulmonary TB progression using a unique model B6J.C3-Sst1C3HeB/Fej Krmn mice that develop human-like necrotic TB granulomas and IFN-I hyperactivity. We established that IFNβ super-induction occurred in the susceptible macrophages in response to continuous TNF stimulation in the context of a dysregulated antioxidant defense. We observed that unresolving oxidative stress amplified the induction of IFNβ through JNK activation and induced the Integrated Stress Response via PKR activation as a compensatory pathway. Subsequently, PKR amplifies IFNβ upregulation, forming a positive feedback loop, maintaining the hyperinflammatory state in susceptible macrophages and leading to mitochondrial dysfunction. Thus, within the inflammatory milieu, a cell-intrinsic mechanism of chronic regulatory dysfunction and unresolved stress gradually weakens the macrophage and ultimately promotes the necrotization of TB granulomas. The aberrant macrophage response to TNF can be prevented by an iron chelator and inhibitor of lipid peroxidation, ferrostatin-1. Moreover, ferrostatin treatment increased macrophage survival and boosted bacterial control in the TNF-stimulated macrophages infected with virulent Mtb. These findings identify targets for host-directed therapeutics to interrupt necrotization in TB granulomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.