Biology has evolved excellent spatial structures for high‐selectivity and high‐affinity capture of heavy metals. Inspired by the spatial structure of the superb‐uranyl binding protein SUP, we mimic the spatial structure of SUP in metal–organic frameworks (MOFs). The MOF UiO‐66‐3C4N fabricated by introducing 4‐aminoisophthalic acid into UiO‐66 shows high uranyl adsorption capacity both in simulated seawater and in natural seawater. In natural seawater, UiO‐66‐3C4N exhibits 17.03 times higher uranium extraction capacity than that of vanadium, indicating the high selectivity of the adsorbent. The EXAFS analysis and DFT calculation reveal that UiO‐66‐3C4N forms smaller nano‐pocket for uranyl capture than that of SUP protein, which can both restrict the entrance of the other interfering ions with larger size and reinforce the binding by increasing the coordination interaction, and therefore qualify the nano‐pocket with high affinity and high selectivity to uranyl.
Extraction of uranium from seawater is critical for the sustainable development of nuclear energy. However, the currently available uranium adsorbents are hampered by co-existing metal ion interference. DNAzymes exhibit high selectivity to specific metal ions, yet there is no DNA-based adsorbent for extraction of soluble minerals from seawater. Herein, the uranyl-binding DNA strand from the DNAzyme is polymerized into DNA-based uranium extraction hydrogel (DNA-UEH) that exhibits a high uranium adsorption capacity of 6.06 mg g−1 with 18.95 times high selectivity for uranium against vanadium in natural seawater. The uranium is found to be bound by oxygen atoms from the phosphate groups and the carbonyl groups, which formed the specific nano-pocket that empowers DNA-UEH with high selectivity and high binding affinity. This study both provides an adsorbent for uranium extraction from seawater and broadens the application of DNA for being used in recovery of high-value soluble minerals from seawater.
Phosphorus (P), as an essential macronutrient for all life on Earth, had long been viewed as the second most limiting nutrient element after nitrogen (N) in certain terrestrial ecosystems, especially in tropical regions with highly weathered soils (Mise et al., 2018;Yang et al., 2013). Unfortunately, there is an increasing evidence that P limitation is a widespread phenomenon occurring in various types of terrestrial ecosystems around the world rather than in some specific terrestrial ecosystems (
Phosphate-solubilizing microbes (PSMs) drive the biogeochemical cycling of phosphorus (P) and hold promise for sustainable agriculture. However, their global distribution, overall diversity and application potential remain unknown. Here, we present the first synthesis of their biogeography, diversity and utility, employing data from 399 papers published between 1981 and 2017, the results of a nationwide field survey in China consisting of 367 soil samples, and a genetic analysis of 12986 genome-sequenced prokaryotic strains. We show that at continental to global scales, the population density of PSMs in environmental samples is correlated with total P rather than pH. Remarkably, positive relationships exist between the population density of soil PSMs and available P, nitrate-nitrogen and dissolved organic carbon in soil, reflecting functional couplings between PSMs and microbes driving biogeochemical cycles of nitrogen and carbon. More than 2704 strains affiliated with at least nine archaeal, 88 fungal and 336 bacterial species were reported as PSMs. Only 2.59% of these strains have been tested for their efficiencies in improving crop growth or yield under field conditions, providing evidence that PSMs are more likely to exert positive effects on wheat growing in alkaline P-deficient soils. Our systematic genetic analysis reveals five promising PSM genera deserving much more attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.