The flourishing advancements in nanotechnology significantly boost their application in biomedical fields. Whereas, inorganic nanomaterials are normally prepared and capped with hydrophobic ligands, which require essential surface modification to increase their biocompatibility and endow extra functions. Phenylboronic acid derivatives have long been known for its capacity for selective recognition of saccharides. Herein, we demonstrated a versatile surface modification strategy to directly convert hydrophobic inorganic nanocrystals into water-dispersible and targeting nanocomposites by employing boronic acid modified photo-polymerizable 10,12-pentacosadiynoicacid and further explore its potentials in selective cancer cell imaging.
Durable and multilevel information encryption technology has been of great importance in recent decades. Here, an inkjet printer-adaptable invisible ink was prepared with lanthanide nanoparticles, and optical decoding of information could only be achieved when specific ligand dipicolinic acid was utilized in the presence of UV illumination. In addition, the proposed protocols displayed long shelf life (>one year) and excellent durability even at harsh conditions such as in the presence of strong acids (1 M HCl) and alkalis (1 M NaOH). Meanwhile, such invisible inks could be further employed on a soft matrix via screen-printing, holding great potential for practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.